IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i9p5105-5115.html
   My bibliography  Save this item

Valuing energy policy attributes for environmental management: Choice experiment evidence from a research institution

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.
  2. Borriello, Antonio & Burke, Paul F. & Rose, John M., 2021. "If one goes up, another must come down: A latent class hybrid choice modelling approach for understanding electricity mix preferences among renewables and non-renewables," Energy Policy, Elsevier, vol. 159(C).
  3. Okubo, Toshihiro & Narita, Daiju & Rehdanz, Katrin & Schröder, Carsten, 2020. "Preferences for Nuclear Power in Post-Fukushima Japan: Evidence from a Large Nationwide Household Survey," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(11).
  4. Dombi, Mihaly & Kuti, Istvan & Balogh, Peter, 2013. "Aspects Of The Sustainable Utilization Of Renewable Energy Sources," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 6(5), pages 1-4, April.
  5. Marco Pautasso, 2012. "Publication Growth in Biological Sub-Fields: Patterns, Predictability and Sustainability," Sustainability, MDPI, vol. 4(12), pages 1-14, November.
  6. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  7. Lee, Chul-Yong & Lee, Min-Kyu & Yoo, Seung-Hoon, 2017. "Willingness to pay for replacing traditional energies with renewable energy in South Korea," Energy, Elsevier, vol. 128(C), pages 284-290.
  8. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
  9. Murakami, Kayo & Ida, Takanori & Tanaka, Makoto & Friedman, Lee, 2015. "Consumers' willingness to pay for renewable and nuclear energy: A comparative analysis between the US and Japan," Energy Economics, Elsevier, vol. 50(C), pages 178-189.
  10. Tang, Chor Foon & Abosedra, Salah & Naghavi, Navaz, 2021. "Does the quality of institutions and education strengthen the quality of the environment? Evidence from a global perspective," Energy, Elsevier, vol. 218(C).
  11. Dombi, Mihály & Kuti, István & Balogh, Péter, 2014. "Sustainability assessment of renewable power and heat generation technologies," Energy Policy, Elsevier, vol. 67(C), pages 264-271.
  12. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
  13. Ladenburg, Jacob, 2014. "Dynamic properties of the preferences for renewable energy sources – A wind power experience-based approach," Energy, Elsevier, vol. 76(C), pages 542-551.
  14. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
  15. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
  16. Reeko Watanabe & Tsunemi Watanabe & Kyohei Wakui, 2021. "Acceptance of Main Power Generation Sources among Japan’s Undergraduate Students: The Roles of Knowledge, Experience, Trust, and Perceived Risk and Benefit," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
  17. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "Carbon dioxide emissions and governance: A nonparametric analysis for the G-20," Energy Economics, Elsevier, vol. 40(C), pages 110-118.
  18. Gianluca Grilli, 2017. "Renewable energy and willingness to pay: Evidences from a meta-analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 253-271.
  19. Stefano Ceolotto & Eleanor Denny, 2021. "Putting a new 'spin' on energy labels: measuring the impact of reframing energy efficiency on tumble dryer choices in a multi-country experiment," Trinity Economics Papers tep1521, Trinity College Dublin, Department of Economics.
  20. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
  21. Loureiro, Maria L. & Labandeira, Xavier & Hanemann, Michael, 2012. "Unrevealing Public Preferences for Climate Change Policies in Spain: A Hybrid Mixture Model," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124933, Agricultural and Applied Economics Association.
  22. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Hydropower externalities: A meta-analysis," Energy Economics, Elsevier, vol. 57(C), pages 66-77.
  23. Uz, Dilek & Mamkhezri, Jamal, 2024. "Household willingness to pay for various attributes of residential solar panels: Evidence from a discrete choice experiment," Energy Economics, Elsevier, vol. 130(C).
  24. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
  25. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
  26. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
  27. S. Ceolotto & E. Denny, 2024. "Putting a New ‘Spin’ on Energy Information: Measuring the Impact of Reframing Energy Efficiency Information on Tumble Dryer Choices in a Multi-country Experiment," Journal of Consumer Policy, Springer, vol. 47(1), pages 51-108, March.
  28. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
  29. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
  30. Aruga, Kentaka & Bolt, Timothy & Pest, Przemysław, 2021. "Energy policy trade-offs in Poland: A best-worst scaling discrete choice experiment," Energy Policy, Elsevier, vol. 156(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.