IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i10p6344-6350.html
   My bibliography  Save this item

The economic value of biochar in crop production and carbon sequestration

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lydia Fryda & Rianne Visser, 2015. "Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis," Agriculture, MDPI, vol. 5(4), pages 1-40, November.
  2. Maggen, Jens & Carleer, Robert & Yperman, Jan & De Vocht, Alain & Schreurs, Sonja & Reggers, Guy & Thijsen, Elsy, 2017. "Biochar Derived from the Dry, Solid Fraction of Pig Manure as Potential Fertilizer for Poor and Contaminated Soils," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(2), May.
  3. Badgujar, Kirtikumar C. & Wilson, Lee D. & Bhanage, Bhalchandra M., 2019. "Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 266-284.
  4. Otte, Pia Piroschka & Vik, Jostein, 2017. "Biochar systems: Developing a socio-technical system framework for biochar production in Norway," Technology in Society, Elsevier, vol. 51(C), pages 34-45.
  5. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  6. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
  7. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
  8. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
  9. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
  10. Taras Lychuk & Roberto Izaurralde & Robert Hill & William McGill & Jimmy Williams, 2015. "Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1437-1458, December.
  11. You, Siming & Tong, Huanhuan & Armin-Hoiland, Joel & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia," Applied Energy, Elsevier, vol. 208(C), pages 495-510.
  12. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  13. Wang, Wei-Cheng, 2016. "Techno-economic analysis of a bio-refinery process for producing Hydro-processed Renewable Jet fuel from Jatropha," Renewable Energy, Elsevier, vol. 95(C), pages 63-73.
  14. Partnership for Market Readiness, 2021. "Beyond Mitigation," World Bank Publications - Reports 35624, The World Bank Group.
  15. Ng, Wei Cheng & You, Siming & Ling, Ran & Gin, Karina Yew-Hoong & Dai, Yanjun & Wang, Chi-Hwa, 2017. "Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis," Energy, Elsevier, vol. 139(C), pages 732-742.
  16. Britta Bergfeldt & Marco Tomasi Morgano & Hans Leibold & Frank Richter & Dieter Stapf, 2018. "Recovery of Phosphorus and other Nutrients during Pyrolysis of Chicken Manure," Agriculture, MDPI, vol. 8(12), pages 1-10, November.
  17. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
  18. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
  19. Brown, Tristan R. & Thilakaratne, Rajeeva & Brown, Robert C. & Hu, Guiping, 2013. "Regional differences in the economic feasibility of advanced biorefineries: Fast pyrolysis and hydroprocessing," Energy Policy, Elsevier, vol. 57(C), pages 234-243.
  20. Campbell, Robert M. & Anderson, Nathaniel M. & Daugaard, Daren E. & Naughton, Helen T., 2018. "Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 330-343.
  21. Berazneva, Julia & Woolf, Dominic & Lee, David R., 2021. "Local lignocellulosic biofuel and biochar co-production in Sub-Saharan Africa: The role of feedstock provision in economic viability," Energy Economics, Elsevier, vol. 93(C).
  22. Valeria Lavagi & Jonathan Kaplan & Georgios Vidalakis & Michelle Ortiz & Michael V. Rodriguez & Madison Amador & Francesca Hopkins & Samantha Ying & Deborah Pagliaccia, 2024. "Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nurse," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
  23. Mohammadi, Ali & Cowie, Annette L. & Cacho, Oscar & Kristiansen, Paul & Anh Mai, Thi Lan & Joseph, Stephen, 2017. "Biochar addition in rice farming systems: Economic and energy benefits," Energy, Elsevier, vol. 140(P1), pages 415-425.
  24. Francisco Miguel González-Pernas & Cristina Grajera-Antolín & Olivia García-Cámara & María González-Lucas & María Teresa Martín & Sergio González-Egido & Juan Luis Aguirre, 2022. "Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate," Energies, MDPI, vol. 15(9), pages 1-16, May.
  25. Simeng Li & Gang Chen, 2020. "Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: present and future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2703-2741, April.
  26. Kong, Sieng-Huat & Loh, Soh-Kheang & Bachmann, Robert Thomas & Rahim, Sahibin Abdul & Salimon, Jumat, 2014. "Biochar from oil palm biomass: A review of its potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 729-739.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.