IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v19y1991i1p35-46.html
   My bibliography  Save this item

Least-cost greenhouse planning supply curves for global warming abatement

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jackson, Tim, 1995. "Joint implementation and cost-effectiveness under the Framework Convention on Climate Change," Energy Policy, Elsevier, vol. 23(2), pages 117-138, February.
  2. Nadine Ibrahim & Christopher Kennedy, 2016. "A Methodology for Constructing Marginal Abatement Cost Curves for Climate Action in Cities," Energies, MDPI, vol. 9(4), pages 1-17, March.
  3. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
  4. Heintz, Roebyem J & Tol, Richard SJ, 1995. "Joint implementation and uniform mixing," Energy Policy, Elsevier, vol. 23(10), pages 911-917, October.
  5. Ekins, Paul & Simon, Sandrine, 2001. "Estimating sustainability gaps: methods and preliminary applications for the UK and the Netherlands," Ecological Economics, Elsevier, vol. 37(1), pages 5-22, April.
  6. Timothy Woolf, 1993. "It is Time to Account for the Environmental Costs of Energy Resources," Energy & Environment, , vol. 4(1), pages 1-29, February.
  7. Haberl, Helmut & Adensam, Heidi & Geissler, Susanne, 1998. "Optimal climate protection strategies for space heating The case of Austria," Energy Policy, Elsevier, vol. 26(15), pages 1125-1135, December.
  8. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
  9. Timilsina, Govinda R. & Sikharulidze, Anna & Karapoghosyan, Eduard & Shatvoryan, Suren, 2017. "Development of marginal abatement cost curves for the building sector in Armenia and Georgia," Energy Policy, Elsevier, vol. 108(C), pages 29-43.
  10. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
  11. Haoqi, Qian & Libo, Wu & Weiqi, Tang, 2017. "“Lock-in” effect of emission standard and its impact on the choice of market based instruments," Energy Economics, Elsevier, vol. 63(C), pages 41-50.
  12. Taylor, Simon, 2012. "The ranking of negative-cost emissions reduction measures," Energy Policy, Elsevier, vol. 48(C), pages 430-438.
  13. Mortimer, N D & Ashley, A & Moody, C A C & Rix, J H R & Moss, S A, 1998. "Carbon dioxide savings in the commercial building sector," Energy Policy, Elsevier, vol. 26(8), pages 615-624, July.
  14. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
  15. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
  16. Zakerinia, Saleh, 2018. "Understanding the Role of Transportation in Meeting California’s Greenhouse Gas Emissions Reduction Target: A Focus on Technology Forcing Policies, Interactions with the Electric Sector and Mitigation," Institute of Transportation Studies, Working Paper Series qt0r69m651, Institute of Transportation Studies, UC Davis.
  17. repec:hal:ciredw:hal-00916328 is not listed on IDEAS
  18. Chappin, E.J.L. & Soana, M. & Arensman, C.E.C. & Swart, F., 2020. "The Y factor for Climate Change abatement – A method to rank options beyond abatement costs," Energy Policy, Elsevier, vol. 147(C).
  19. repec:hal:wpaper:hal-00916328 is not listed on IDEAS
  20. Vogt-Schilb, Adrien & Hallegatte, Stephane, 2011. "When starting with the most expensive option makes sense : use and misuse of marginal abatement cost curves," Policy Research Working Paper Series 5803, The World Bank.
  21. Christopher Charles Seeley & Shobhakar Dhakal, 2021. "Energy Efficiency Retrofits in Commercial Buildings: An Environmental, Financial, and Technical Analysis of Case Studies in Thailand," Energies, MDPI, vol. 14(9), pages 1-17, April.
  22. Lee, W.L. & Yik, F.W.H. & Jones, P., 2003. "A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings," Energy, Elsevier, vol. 28(8), pages 877-893.
  23. Oliver, M. & Jackson, T., 2000. "The evolution of economic and environmental cost for crystalline silicon photovoltaics," Energy Policy, Elsevier, vol. 28(14), pages 1011-1021, November.
  24. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
  25. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
  26. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.
  27. Levihn, Fabian, 2016. "On the problem of optimizing through least cost per unit, when costs are negative: Implications for cost curves and the definition of economic efficiency," Energy, Elsevier, vol. 114(C), pages 1155-1163.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.