IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v30y2008i5p2134-2153.html
   My bibliography  Save this item

Oil price dynamics (2002-2006)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dennis Alvaro & Ángel Guillén & Gabriel Rodríguez, 2017. "Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(1), pages 71-103, February.
  2. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
  3. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
  4. Peng, Bin-Bin & Xu, Jin-Hua & Fan, Ying, 2018. "Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China," Energy Policy, Elsevier, vol. 113(C), pages 306-319.
  5. Day, Min-Yuh & Ni, Yensen & Huang, Paoyu, 2019. "Trading as sharp movements in oil prices and technical trading signals emitted with big data concerns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 349-372.
  6. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
  7. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
  8. Baum, Christopher F. & Zerilli, Paola & Chen, Liyuan, 2021. "Stochastic volatility, jumps and leverage in energy and stock markets: Evidence from high frequency data," Energy Economics, Elsevier, vol. 93(C).
  9. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
  10. Chai, Jian & Lu, Quanying & Hu, Yi & Wang, Shouyang & Lai, Kin Keung & Liu, Hongtao, 2018. "Analysis and Bayes statistical probability inference of crude oil price change point," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 271-283.
  11. Kamran Mahmodpour & Yaser Sistani Badooei & Hadiseh Mohseni & Saman Veismoradi, 2016. "The Comparative Comparison of Exchange Rate Models," International Journal of Economics and Financial Issues, Econjournals, vol. 6(2), pages 380-385.
  12. Chang, Ting-Huan & Huang, Chien-Ming & Lee, Ming-Chih, 2009. "Threshold effect of the economic growth rate on the renewable energy development from a change in energy price: Evidence from OECD countries," Energy Policy, Elsevier, vol. 37(12), pages 5796-5802, December.
  13. Baum, Christopher F. & Zerilli, Paola, 2016. "Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility," Energy Economics, Elsevier, vol. 53(C), pages 175-181.
  14. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
  15. Márcio Poletti Laurini & Roberto Baltieri Mauad & Fernando Antonio Lucena Aiube, 2016. "Multivariate Stochastic Volatility-Double Jump Model: an application for oil assets," Working Papers Series 415, Central Bank of Brazil, Research Department.
  16. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
  17. Sepehr Ramyar & Farhad Kianfar, 2019. "Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 743-761, February.
  18. Mason, Charles F. & A. Wilmot, Neil, 2014. "Jump processes in natural gas markets," Energy Economics, Elsevier, vol. 46(S1), pages 69-79.
  19. Neil A. Wilmot & Charles F. Mason, 2013. "Jump Processes in the Market for Crude Oil," The Energy Journal, , vol. 34(1), pages 33-48, January.
  20. Cummins, Mark & Dowling, Michael & Kearney, Fearghal, 2016. "Oil market modelling: A comparative analysis of fundamental and latent factor approaches," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 211-218.
  21. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
  22. Su, Chi-Wei & Khan, Khalid & Tao, Ran & Nicoleta-Claudia, Moldovan, 2019. "Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia," Energy, Elsevier, vol. 187(C).
  23. Cao, Wenbin & Guernsey, Scott B. & Linn, Scott C., 2018. "Evidence of infinite and finite jump processes in commodity futures prices: Crude oil and natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 629-641.
  24. Zhang, Chuanguo & Qu, Xuqin, 2015. "The effect of global oil price shocks on China's agricultural commodities," Energy Economics, Elsevier, vol. 51(C), pages 354-364.
  25. Babajide Fowowe, 2014. "Paper oil and physical oil: has speculative pressure in oil futures increased volatility in spot oil prices?," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 38(3), pages 356-372, September.
  26. Liu, Qingfu & Tu, Anthony H., 2012. "Jump spillovers in energy futures markets: Implications for diversification benefits," Energy Economics, Elsevier, vol. 34(5), pages 1447-1464.
  27. Mason, Charles F. & Wilmot, Neil A., 2016. "Price discontinuities in the market for RINs," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 79-97.
  28. Dash, Devi Prasad & Sethi, Narayan & Bal, Debi Prasad, 2018. "Is the demand for crude oil inelastic for India? Evidence from structural VAR analysis," Energy Policy, Elsevier, vol. 118(C), pages 552-558.
  29. Gronwald, Marc, 2012. "A characterization of oil price behavior — Evidence from jump models," Energy Economics, Elsevier, vol. 34(5), pages 1310-1317.
  30. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "An information diffusion-based model of oil futures price," Energy Economics, Elsevier, vol. 36(C), pages 518-525.
  31. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
  32. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
  33. Arturo Lorenzo-Valdés, 2021. "Conditional Probability of Jumps in Oil Prices," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(4), pages 1-14, Octubre -.
  34. Aynur Pala, 2013. "Structural Breaks, Cointegration, and Causality by VECM Analysis of Crude Oil and Food Price," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 238-246.
  35. Da Fonseca, José & Ignatieva, Katja & Ziveyi, Jonathan, 2016. "Explaining credit default swap spreads by means of realized jumps and volatilities in the energy market," Energy Economics, Elsevier, vol. 56(C), pages 215-228.
  36. Afees A. Salisu & Ismail O. Fasanya, 2012. "Comparative Performance of Volatility Models for Oil Price," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 167-183.
  37. Fileccia, Gaetano & Sgarra, Carlo, 2018. "A particle filtering approach to oil futures price calibration and forecasting," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 21-34.
  38. Claudio Dicembrino & Pasquale Lucio Scandizzo, 2012. "The Fundamental and Speculative Components of the Oil Spot Price: A Real Option Value Approach," CEIS Research Paper 229, Tor Vergata University, CEIS, revised 18 Apr 2012.
  39. Kearney, Fearghal & Murphy, Finbarr & Cummins, Mark, 2015. "An analysis of implied volatility jump dynamics: Novel functional data representation in crude oil markets," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 199-216.
  40. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
  41. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
  42. Chin Wen Cheong, 2010. "A Variance Ratio Test of Random Walk in Energy Spot Markets," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(1), pages 105-117, January.
  43. Abdel-Latif, Hany & El-Gamal, Mahmoud, 2020. "Financial liquidity, geopolitics, and oil prices," Energy Economics, Elsevier, vol. 87(C).
  44. Onder Buberkoku, 2017. "Examining Energy Futures Market Efficiency Under Multiple Regime Shifts," International Journal of Energy Economics and Policy, Econjournals, vol. 7(6), pages 61-71.
  45. Hahn, Warren J. & DiLellio, James A. & Dyer, James S., 2014. "What do market-calibrated stochastic processes indicate about the long-term price of crude oil?," Energy Economics, Elsevier, vol. 44(C), pages 212-221.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.