My bibliography
Save this item
Decomposition of industrial energy consumption : The energy intensity approach
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Climent, Francisco & Pardo, Angel, 2007. "Decoupling factors on the energy-output linkage: The Spanish case," Energy Policy, Elsevier, vol. 35(1), pages 522-528, January.
- Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
- Kunlun Chen & Xiaoqiong Liu & Lei Ding & Gengzhi Huang & Zhigang Li, 2016. "Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China," IJERPH, MDPI, vol. 13(12), pages 1-19, December.
- van Groenendaal, Willem J. H., 1995.
"Assessing demand when introducing a new fuel : Natural gas on Java,"
Energy Economics, Elsevier, vol. 17(2), pages 147-161, April.
- van Groenendaal, W.J.H., 1994. "Assessing demand when introducing a new fuel : Natural gas on Java," Research Memorandum FEW 640, Tilburg University, School of Economics and Management.
- van Groenendaal, W.J.H., 1994. "Assessing demand when introducing a new fuel : Natural gas on Java," Other publications TiSEM cb49c1fd-3884-4302-bcbf-4, Tilburg University, School of Economics and Management.
- van Groenendaal, W.J.H., 1995. "Assessing demand when introducing a new fuel : Natural gas on Java," Other publications TiSEM dfbf9c78-06c2-4e7d-b3af-5, Tilburg University, School of Economics and Management.
- Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015.
"Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union,"
Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
- Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," CAWM Discussion Papers 79, University of Münster, Münster Center for Economic Policy (MEP).
- Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," ZEW Discussion Papers 15-011, ZEW - Leibniz Centre for European Economic Research.
- Sudhakara Reddy, B. & Kumar Ray, Binay, 2011.
"Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector,"
Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
- Binay Kumar Ray & B. Sudhakara Reddy, 2008. "Understanding industrial energy use - Physical energy intensity changes in Indian manufacturing sector," Energy Working Papers 22328, East Asian Bureau of Economic Research.
- B. Sudhakara Reddy & Binay Kumar Ray, 2010. "Understanding Industrial Energy Use: Physical Energy Intensity Changes in Indian Manufacturing Sector," Working Papers id:2397, eSocialSciences.
- Binay Kumar Ray & B. Sudhakara Reddy, 2008. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2008-011, Indira Gandhi Institute of Development Research, Mumbai, India.
- Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
- Greening, Lorna A. & Davis, William B. & Schipper, Lee, 1998. "Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971-1991," Energy Economics, Elsevier, vol. 20(1), pages 43-65, February.
- Meiryani Meiryani & Leny Suzan & Jajat Sudrajat & Watcharin Joemsittiprasert, 2020. "Impact of Accounting Information System and Intensity of Energy on Energy Consumption in Sugar Industry of Indonesia: Moderating Role of Effectiveness of Supply," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 647-654.
- Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2006. "Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective," Energy Policy, Elsevier, vol. 34(13), pages 1499-1507, September.
- Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
- Santosh Kumar Sahu and Sumedha Kamboj, 2019. "Decomposition Analysis of GHG Emissions In Emerging Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(3), pages 59-77, September.
- González, P.Fernández & Suárez, R.Pérez, 2003. "Decomposing the variation of aggregate electricity intensity in Spanish industry," Energy, Elsevier, vol. 28(2), pages 171-184.
- Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
- Binay Kumar Ray & B.Sudhakara Reddy, 2007.
"Decomposition of Energy Consumption and Energy Intensity in Indian Manufacturing Industries,"
Energy Working Papers
22327, East Asian Bureau of Economic Research.
- Binay Kumar Ray & B. Sudhakara Reddy, 2007. "Decomposition of energy consumption and energy intensity in Indian manufacturing industries," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2007-020, Indira Gandhi Institute of Development Research, Mumbai, India.
- Zhang, Zhong Xiang, 2001.
"Why has the energy intensity fallen in China's industrial sector in the 1990s?: the relative importance of structural change and intensity change,"
CDS Research Reports
200111, University of Groningen, Centre for Development Studies (CDS).
- Zhang, Zhong Xiang, 2001. "Why has the energy intensity fallen in China's industrial sector in the 1990s? : the relative importance of structural change and intensity change," CCSO Working Papers 200105, University of Groningen, CCSO Centre for Economic Research.
- Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
- Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
- Andrés, Lidia & Padilla, Emilio, 2015.
"Energy intensity in road freight transport of heavy goods vehicles in Spain,"
Energy Policy, Elsevier, vol. 85(C), pages 309-321.
- Lidia Andres Delgado & Emilio Padilla Rosa, 2014. "Energy Intensity in Road Freight Transport of Heavy Goods Vehicles in Spain," Working Papers wpdea1401, Department of Applied Economics at Universitat Autonoma of Barcelona.
- Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
- Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
- Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
- de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
- Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
- Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
- Taeyoung Jin & Bongseok Choi, 2020. "Sectoral Decomposition of Korea’s Energy Consumption by Global Value Chain Dimensions," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
- Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
- Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
- Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
- Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
- Santosh Kumar SAHU & K NARAYANAN, 2010.
"Decomposition Of Industrial Energy Consumption In Indian Manufacturing The Energy Intensity Approach,"
Journal of Advanced Research in Management, ASERS Publishing, vol. 1(1), pages 22-38.
- Sahu, Santosh & Narayanan, K, 2010. "Decomposition of Industrial Energy Consumption in Indian Manufacturing : The Energy Intensity Approach," MPRA Paper 21719, University Library of Munich, Germany.
- Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
- Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
- Arto, Iñaki & Ansuategui Cobo, José Alberto, 2003. "La evolución de la intensidad energética de la industria vasca entre 1982-2001: Un análisis de descomposición," IKERLANAK 2003-07, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
- Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
- Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
- Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
- Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
- Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
- Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
- Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
- Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
- Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013.
"Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis,"
Applied Energy, Elsevier, vol. 101(C), pages 323-332.
- Jing-Li Fan & Hua Liao & Qiao-Mei Liang & Hirokazu Tatano & Chun-Feng Liu & Yi-Ming Wei, 2011. "Residential carbon emission evolutions in urban-rural divided China: An end-use and behavior analysis," CEEP-BIT Working Papers 16, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
- Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015.
"Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector,"
Sustainability, MDPI, vol. 7(12), pages 1-22, December.
- Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jorn Altmann, 2015. "Driving Forces of CO2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," TEMEP Discussion Papers 2015128, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Dec 2015.
- Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
- Schipper, Lee & Ting, Michael & Khrushch, Marta & Golove, William, 1997. "The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis," Energy Policy, Elsevier, vol. 25(7-9), pages 651-672.
- Wendong Lv & Xiaoxin Hong & Kuangnan Fang, 2015. "Chinese regional energy efficiency change and its determinants analysis: Malmquist index and Tobit model," Annals of Operations Research, Springer, vol. 228(1), pages 9-22, May.
- Ortega-Ruiz, G. & Mena-Nieto, A. & Golpe, A.A. & García-Ramos, J.E., 2022. "CO2 emissions and causal relationships in the six largest world emitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Isil Sirin Selcuk & Serap Durusoy, 2019. "The Relationship Between Financial Crisis and Energy Efficiency: A Sectoral Study in Turkey," Research in World Economy, Research in World Economy, Sciedu Press, vol. 10(3), pages 78-88, December.
- Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
- Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
- Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
- Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
- Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
- Ditya Nurdianto & Budy Resosudarmo, 2011. "Prospects and challenges for an ASEAN energy integration policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 103-127, June.
- Choi, Ki-Hong & Ang, B. W., 2003. "Decomposition of aggregate energy intensity changes in two measures: ratio and difference," Energy Economics, Elsevier, vol. 25(6), pages 615-624, November.
- Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
- Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
- Bruyn, Sander M. de, 1997. "Explaining the environmental Kuznets Curve: the case of sulphur emissions," Serie Research Memoranda 0013, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Welsch, Heinz, 2001. "The determinants of production-related carbon emissions in West Germany, 1985-1990: assessing the role of technology and trade," Structural Change and Economic Dynamics, Elsevier, vol. 12(4), pages 425-455, December.
- Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
- William X. Wei & Dezhi Chen & Daiping Hu, 2016. "Study on the Evolvement of Technology Development and Energy Efficiency—A Case Study of the Past 30 Years of Development in Shanghai," Sustainability, MDPI, vol. 8(5), pages 1-21, May.
- Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
- Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
- Tae Jung & Tae Park, 2000. "Structural Change of the Manufacturing Sector in Korea: Measurement of Real Energy Intensity and CO2 Emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 221-238, September.
- Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
- Sally Salamah & Wan Abbas Zakaria & Toto Gunarto & Lies Maria Hamzah & Muhammad Said, 2019. "Analysis of Energy Intensity Decomposition in the Textile Industrial Sub Sector of Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 1-10.