IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v11y1989i2p82-94.html
   My bibliography  Save this item

Separability, functional form and regulatory policy in models of interfuel substitution

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Brannlund, Runar & Lundgren, Tommy, 2004. "A dynamic analysis of interfuel substitution for Swedish heating plants," Energy Economics, Elsevier, vol. 26(6), pages 961-976, November.
  2. Manuel Frondel & Peter Behl & Holger Dette & Harald Tauchmann, 2011. "Choice is Suffering: A Focused Information Criterion for Model Selection Activation Program for Disadvantaged Youths," Ruhr Economic Papers 0250, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  3. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
  4. Patrik Söderholm, 2000. "Environmental Regulations and Interfuel Substitution in the Power Sector: A Generalized Leontief Model," Energy & Environment, , vol. 11(1), pages 1-23, January.
  5. Dahl, Carol & Ko, James, 1998. "The effect of deregulation on US fossil fuel substitution in the generation of electricity," Energy Policy, Elsevier, vol. 26(13), pages 981-988, November.
  6. Ali Jadidzadeh & Apostolos Serletis, 2016. "Sectoral Interfuel Substitution in Canada: An Application of NQ Flexible Functional Forms," The Energy Journal, , vol. 37(2), pages 181-200, April.
  7. Behl, Peter & Dette, Holger & Frondel, Manuel & Tauchmann, Harald, 2012. "Choice is suffering: A Focused Information Criterion for model selection," Economic Modelling, Elsevier, vol. 29(3), pages 817-822.
  8. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
  9. Laura Spierdijk & Sherrill Shaffer & Tim Considine, 2016. "Adapting to changing input prices in response to the crisis: The case of US commercial banks," CAMA Working Papers 2016-15, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  10. Suh, Dong Hee, 2021. "Exploring the U.S. mining industry's demand system for production factors: Implications for economic sustainability," Resources Policy, Elsevier, vol. 74(C).
  11. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
  12. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
  13. Suh, Dong Hee & Moss, Charles B., 2014. "Dynamic Adjustment of Demand for Distiller's Grain: Implications for Feed and Livestock Markets," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162454, Southern Agricultural Economics Association.
  14. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
  15. Bacon, Robert, 1992. "Measuring the possibilities of interfuel substitution," Policy Research Working Paper Series 1031, The World Bank.
  16. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
  17. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  18. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
  19. Spierdijk, Laura & Shaffer, Sherrill & Considine, Tim, 2017. "How do banks adjust to changing input prices? A dynamic analysis of U.S. commercial banks before and after the crisis," Journal of Banking & Finance, Elsevier, vol. 85(C), pages 1-14.
  20. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
  21. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.
  22. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
  23. Sebastian M. Deininger & Lukas Mohler & Daniel Mueller, 2018. "Factor substitution in Swiss manufacturing: empirical evidence using micro panel data," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 154(1), pages 1-15, December.
  24. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
  25. Moody, Carlisle E., 1996. "A regional linear logit fuel demand model for electric utilities," Energy Economics, Elsevier, vol. 18(4), pages 295-314, October.
  26. Hossain, A. K. M. Nurul & Serletis, Apostolos, 2020. "Biofuel substitution in the U.S. transportation sector," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
  27. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
  28. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
  29. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
  30. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
  31. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
  32. Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
  33. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.
  34. Serletis, Apostolos & Shahmoradi, Asghar, 2008. "Semi-nonparametric estimates of interfuel substitution in U.S. energy demand," Energy Economics, Elsevier, vol. 30(5), pages 2123-2133, September.
  35. repec:bla:opecrv:v:32:y:2008:i:2:p:184-195 is not listed on IDEAS
  36. Dongfeng Chang & Apostolos Serletis, 2014. "The Demand For Gasoline: Evidence From Household Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 291-313, March.
  37. Serletis, Apostolos & Xu, Libo, 2022. "Interfuel substitution: A copula approach," Journal of Commodity Markets, Elsevier, vol. 28(C).
  38. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
  39. Lin, Boqiang & Atsagli, Philip, 2017. "Energy consumption, inter-fuel substitution and economic growth in Nigeria," Energy, Elsevier, vol. 120(C), pages 675-685.
  40. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
  41. Arnberg, Soren & Bjorner, Thomas Bue, 2007. "Substitution between energy, capital and labour within industrial companies: A micro panel data analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 122-136, May.
  42. Elkhafif, Mahmoud A. T., 1996. "An iterative approach for weather-correcting energy consumption data," Energy Economics, Elsevier, vol. 18(3), pages 221-230, July.
  43. KITAMURA Toshihiko & MANAGI Shunsuke, 2016. "Substitution between Purchased Electricity and Fuel for Onsite Power Generation in the Manufacturing Industry: Plant level analysis in Japan," Discussion papers 16007, Research Institute of Economy, Trade and Industry (RIETI).
  44. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
  45. Nurul Hossain, A.K.M. & Serletis, Apostolos, 2017. "A century of interfuel substitution," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 28-42.
  46. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
  47. Timothy J. Considine & Edward J. M. Manderson, 2013. "The Cost of Solar-Centric Renewable Portfolio Standards," Economics Discussion Paper Series 1323, Economics, The University of Manchester.
  48. repec:zbw:rwirep:0250 is not listed on IDEAS
  49. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
  50. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
  51. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
  52. Dong Hee Suh & Charles B. Moss, 2016. "Dynamic interfeed substitution: implications for incorporating ethanol byproducts into feedlot rations," Applied Economics, Taylor & Francis Journals, vol. 48(20), pages 1893-1901, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.