IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v150y2003i2p406-419.html
   My bibliography  Save this item

Optimal allocation of multi-state elements in linear consecutively connected systems with vulnerable nodes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sharifi, Mani & Taghipour, Sharareh, 2024. "Redundancy allocation problem with a mix of components for a multi-state system and continuous performance level components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  2. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
  3. Levitin, Gregory & Hausken, Kjell, 2009. "Meeting a demand vs. enhancing protections in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1711-1717.
  4. Levitin, Gregory & Xing, Liudong & Yu, Shengji, 2014. "Optimal connecting elements allocation in linear consecutively-connected systems with phased mission and common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 85-94.
  5. Deck, Cary & Foster, Joshua & Song, Hongwei, 2015. "Defense against an opportunistic challenger: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 242(2), pages 501-513.
  6. Yu, Huan & Yang, Jun & Peng, Rui & Zhao, Yu, 2016. "Reliability evaluation of linear multi-state consecutively-connected systems constrained by m consecutive and n total gaps," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 35-43.
  7. Freixas, Josep & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Achievable hierarchies in voting games with abstention," European Journal of Operational Research, Elsevier, vol. 236(1), pages 254-260.
  8. Xing, Liudong & Levitin, Gregory, 2018. "Connectivity modeling and optimization of linear consecutively connected systems with repairable connecting elements," European Journal of Operational Research, Elsevier, vol. 264(2), pages 732-741.
  9. Deck, Cary & Sheremeta, Roman M., 2019. "The tug-of-war in the laboratory," European Journal of Political Economy, Elsevier, vol. 60(C).
  10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Connectivity evaluation and optimal service centers allocation in repairable linear consecutively connected systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 187-193.
  11. Kjell Hausken & Gregory Levitin, 2008. "Efficiency of Even Separation of Parallel Elements with Variable Contest Intensity," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1477-1486, October.
  12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Linear multistate consecutively-connected systems subject to a constrained number of gaps," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 246-252.
  13. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
  14. Levitin, Gregory & Hausken, Kjell, 2010. "Separation in homogeneous systems with independent identical elements," European Journal of Operational Research, Elsevier, vol. 203(3), pages 625-634, June.
  15. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Consecutively connected systems with unreliable resource generators and storages," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  16. Hausken, Kjell, 2008. "Strategic defense and attack for series and parallel reliability systems," European Journal of Operational Research, Elsevier, vol. 186(2), pages 856-881, April.
  17. Altiparmak, Fulya & Dengiz, Berna, 2009. "A cross entropy approach to design of reliable networks," European Journal of Operational Research, Elsevier, vol. 199(2), pages 542-552, December.
  18. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
  19. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
  20. Qiu, Qingan & Cui, Lirong & Gao, Hongda & Yi, He, 2018. "Optimal allocation of units in sequential probability series systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 351-363.
  21. Josep Freixas & Montserrat Pons, 2021. "On anonymous and weighted voting systems," Theory and Decision, Springer, vol. 91(4), pages 477-491, November.
  22. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.
  23. Josep Freixas & Roberto Lucchetti, 2016. "Power in voting rules with abstention: an axiomatization of a two components power index," Annals of Operations Research, Springer, vol. 244(2), pages 455-474, September.
  24. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2017. "Optimal arrangement of connecting elements in linear consecutively connected systems with heterogeneous warm standby groups," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 395-401.
  25. Eryilmaz, Serkan, 2020. "Age-based preventive maintenance for coherent systems with applications to consecutive-k-out-of-n and related systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  26. Hausken, Kjell, 2008. "Strategic defense and attack for reliability systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1740-1750.
  27. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.