IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v144y2003i3p530-544.html
   My bibliography  Save this item

Compensating for non-homogeneity in decision-making units in data envelopment analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gregory E. Frey & Hugo E. Fassola & A. Nahuel Pachas & Luis Colcombet & Santiago M. Lacorte & Mitch Renkow & Oscar Pérez & Frederick W. Cubbage, 2012. "A Within-Farm Efficiency Comparison of Silvopasture Systems with Conventional Pasture and Forestry in Northeast Argentina," Land Economics, University of Wisconsin Press, vol. 88(4), pages 639-657.
  2. Mansour Zarrin & Jan Schoenfelder & Jens O. Brunner, 2022. "Homogeneity and Best Practice Analyses in Hospital Performance Management: An Analytical Framework," Health Care Management Science, Springer, vol. 25(3), pages 406-425, September.
  3. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
  4. Shuguang Lin & Paul Rouse & Ying-Ming Wang & Lin Lin & Zhen-Quan Zheng, 2023. "Performance measurement of nonhomogeneous Hong Kong hospitals using directional distance functions," Health Care Management Science, Springer, vol. 26(2), pages 330-343, June.
  5. Kounetas, Konstantinos, 2015. "Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries," Energy Policy, Elsevier, vol. 83(C), pages 277-287.
  6. Afsharian, Mohsen & Kamali, Sara & Ahn, Heinz & Bogetoft, Peter, 2024. "Individualized second stage corrections in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 563-577.
  7. Shaddady, Ali & Moore, Tomoe, 2019. "Investigation of the effects of financial regulation and supervision on bank stability: The application of CAMELS-DEA to quantile regressions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 58(C), pages 96-116.
  8. George Halkos & Mike G. Tsionas, 2019. "Accounting for Heterogeneity in Environmental Performance Using Data Envelopment Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1005-1025, October.
  9. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
  10. Hsu, Wen-Kai K. & Huynh, Nguyen Tan & Quoc, Thanh Le & Yu, Hui-Lung, 2024. "An assessment model of eco-efficiency for container terminals within a port," Economics of Transportation, Elsevier, vol. 39(C).
  11. Diaz-Balteiro, Luis & Casimiro Herruzo, A. & Martinez, Margarita & Gonzalez-Pachon, Jacinto, 2006. "An analysis of productive efficiency and innovation activity using DEA: An application to Spain's wood-based industry," Forest Policy and Economics, Elsevier, vol. 8(7), pages 762-773, October.
  12. Cruz-Cázares, Claudio & Bayona-Sáez, Cristina & García-Marco, Teresa, 2013. "You can’t manage right what you can’t measure well: Technological innovation efficiency," Research Policy, Elsevier, vol. 42(6), pages 1239-1250.
  13. Maciej Jewczak & Agata Zoltaczek, 2011. "Technical efficiency evaluation of health care entities in 1999-2009 - spatial and dynamic analysis - a case study of general care hospitals, with the use of DEA method (Ocena efektywnosci technicznej," Problemy Zarzadzania, University of Warsaw, Faculty of Management, vol. 9(33), pages 194-210.
  14. Kounetas, Kostas & Napolitano, Oreste & Stavropoulos, Spyridon & Burger, Martijn, 2018. "European Regional Productive Performance under a Metafrontier Framework. The role of patents and human capital on technology gap?," MPRA Paper 88957, University Library of Munich, Germany, revised 17 Jul 2018.
  15. Xiang Ji & Jie Wu & Qingyuan Zhu & Jiasen Sun, 2019. "Using a hybrid heterogeneous DEA method to benchmark China’s sustainable urbanization: an empirical study," Annals of Operations Research, Springer, vol. 278(1), pages 281-335, July.
  16. Min, Hokey & Joo, Seong-Jong, 2016. "A comparative performance analysis of airline strategic alliances using data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 99-110.
  17. Gonzalez-Padron, Tracy & Akdeniz, M. Billur & Calantone, Roger J., 2014. "Benchmarking sales staffing efficiency in dealerships using extended data envelopment analysis," Journal of Business Research, Elsevier, vol. 67(9), pages 1904-1911.
  18. Mehmet A. Begen & Fredrik Ødegaard & Jafar Sadeghi, 2024. "On aggregation of technical and revenue efficiency measures," Journal of Productivity Analysis, Springer, vol. 62(3), pages 335-350, December.
  19. Elizabeth Ahikiriza & Jef Meensel & Xavier Gellynck & Ludwig Lauwers, 2021. "Heterogeneity in frontier analysis: does it matter for benchmarking farms?," Journal of Productivity Analysis, Springer, vol. 56(2), pages 69-84, December.
  20. Ali Shaddady & Faisal Alnori, 2020. "Do Ownership Structure, Political Connections and Executive Compensation Have Multifaceted Effects on Firm Performance? An Alternative Approach," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(10), pages 1-22, October.
  21. De la Cruz, Marco & Mergoni, Anna, 2024. "Assessing the performance of Peruvian education system from a governance perspective," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
  22. Teodora Cristina Barbu & Iustina Alina Boitan, 2019. "Ethical Financing in Europe—Non-Parametric Assessment of Efficiency," Sustainability, MDPI, vol. 11(21), pages 1-10, October.
  23. Martinez-Nuñez, Margarita & Perez-Aguiar, Waldo Saúl, 2013. "Un modelo no paramétrico de evaluación de la eficiencia y la gestión de las redes sociales virtuales: Una aplicación a las empresas del sector de las telecomunicaciones en España/A Non-Parametric Mode," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 31, pages 597-620, Septiembr.
  24. Josef Jablonský, 2019. "Data Envelopment Analysis Models in Non-Homogeneous Environment," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 67(6), pages 1535-1540.
  25. Zhu, Weiwei & Yu, Yu & Sun, Panpan, 2018. "Data envelopment analysis cross-like efficiency model for non-homogeneous decision-making units: The case of United States companies’ low-carbon investment to attain corporate sustainability," European Journal of Operational Research, Elsevier, vol. 269(1), pages 99-110.
  26. Julie Harrison & Paul Rouse & Jamie Armstrong, 2012. "Categorical and continuous non-discretionary variables in data envelopment analysis: a comparison of two single-stage models," Journal of Productivity Analysis, Springer, vol. 37(3), pages 261-276, June.
  27. José Manuel Cordero & Cristina Polo & Daniel Santín & Gabriela Sicilia, 2016. "Monte-Carlo Comparison of Conditional Nonparametric Methods and Traditional Approaches to Include Exogenous Variables," Pacific Economic Review, Wiley Blackwell, vol. 21(4), pages 483-497, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.