My bibliography
Save this item
Testing multivariate distributions in GARCH models
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jonas Dovern & Hans Manner, 2020.
"Order‐invariant tests for proper calibration of multivariate density forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
- Jonas Dovern & Hans Manner, 2018. "Order Invariant Tests for Proper Calibration of Multivariate Density Forecasts," Graz Economics Papers 2018-09, University of Graz, Department of Economics.
- Jonas Dovern & Hans Manner, 2018. "Order Invariant Tests for Proper Calibration of Multivariate Density Forecasts," CESifo Working Paper Series 7023, CESifo.
- Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
- Francq, Christian & Jiménez Gamero, Maria Dolores & Meintanis, Simos, 2015. "Tests for sphericity in multivariate garch models," MPRA Paper 67411, University Library of Munich, Germany.
- João Henrique G. Mazzeu & Gloria González-Rivera & Esther Ruiz & Helena Veiga, 2020.
"A bootstrap approach for generalized Autocontour testing Implications for VIX forecast densities,"
Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 971-990, November.
- Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017. "A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities," Working Papers 201709, University of California at Riverside, Department of Economics.
- M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
- Gabriele Fiorentini & Enrique Sentana, 2021.
"Specification tests for non‐Gaussian maximum likelihood estimators,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
- Gabriele Fiorentini & Enrique Sentana, 2018. "Specification tests for non-Gaussian maximum likelihood estimators," Working Paper series 18-22, Rimini Centre for Economic Analysis.
- Sentana, Enrique & Fiorentini, Gabriele, 2018. "Specification tests for non-Gaussian maximum likelihood estimators," CEPR Discussion Papers 12934, C.E.P.R. Discussion Papers.
- Gabriele Fiorentini & Enrique Sentana, 2018. "Specification Tests for Non-Gaussian Maximum Likelihood Estimators," Working Papers wp2018_1804, CEMFI.
- Gabriele Fiorentini & Enrique Sentana, 2018. "Specification tests for non-Gaussian maximum likelihood estimators," Econometrics Working Papers Archive 2018_05, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Chen, Qiang & Zheng, Xu & Pan, Zhiyuan, 2015. "Asymptotically distribution-free tests for the volatility function of a diffusion," Journal of Econometrics, Elsevier, vol. 184(1), pages 124-144.
- Igor L. Kheifets, 2015.
"Specification tests for nonlinear dynamic models,"
Econometrics Journal, Royal Economic Society, vol. 18(1), pages 67-94, February.
- Igor Kheifets, 2014. "Specification Tests for Nonlinear Dynamic Models," Working Papers w0209, New Economic School (NES).
- Igor Kheifets, 2014. "Specification Tests for Nonlinear Dynamic Models," Cowles Foundation Discussion Papers 1937, Cowles Foundation for Research in Economics, Yale University, revised Oct 2014.
- Igor Kheifets, 2014. "Specification Tests for Nonlinear Dynamic Models," Working Papers w0209, Center for Economic and Financial Research (CEFIR).
- repec:awi:wpaper:0472 is not listed on IDEAS
- Igor Kheifets, 2011. "Goodness-of-fit testing (in Russian)," Quantile, Quantile, issue 9, pages 25-34, July.
- Conrad, Christian & Karanasos, Menelaos, 2010.
"Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model,"
Econometric Theory, Cambridge University Press, vol. 26(3), pages 838-862, June.
- Christian Conrad & Menelaos Karanasos, 2008. "Negative Volatility Spillovers in the Unrestricted ECCC-GARCH Model," KOF Working papers 08-189, KOF Swiss Economic Institute, ETH Zurich.
- Karanasos, M. & Kartsaklas, A., 2009. "Dual long-memory, structural breaks and the link between turnover and the range-based volatility," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 838-851, December.
- Herman J. Bierens & Li Wang, 2017. "Weighted simulated integrated conditional moment tests for parametric conditional distributions of stationary time series processes," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 103-135, March.
- Lee, Sangyeol & Ng, Chi Tim, 2011. "Normality test for multivariate conditional heteroskedastic dynamic regression models," Economics Letters, Elsevier, vol. 111(1), pages 75-77, April.
- Chen, Bin & Hong, Yongmiao, 2014.
"A unified approach to validating univariate and multivariate conditional distribution models in time series,"
Journal of Econometrics,
Elsevier, vol. 178(P1), pages 22-44.
- Bin Chen & Yongmiao Hong, 2013. "A Unified Approach to Validating Univariate and Multivariate Conditional Distribution Models in Time Series," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Simos Meintanis & Bojana Milošević & Marko Obradović & Mirjana Veljović, 2024. "Goodness‐of‐fit tests for the multivariate Student‐t distribution based on i.i.d. data, and for GARCH observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 298-319, March.
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
- Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.
- Kheifets, Igor L., 2018. "Multivariate specification tests based on a dynamic Rosenblatt transform," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 1-14.
- Ko, Stanley I.M. & Park, Sung Y., 2013. "Multivariate density forecast evaluation: A modified approach," International Journal of Forecasting, Elsevier, vol. 29(3), pages 431-441.
- Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
- González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
- Donghang Luo & Ke Zhu & Huan Gong & Dong Li, 2020. "Testing error distribution by kernelized Stein discrepancy in multivariate time series models," Papers 2008.00747, arXiv.org.
- Lu, Xiaohui & Zheng, Xu, 2020. "A goodness-of-fit test for copulas based on martingale transformation," Journal of Econometrics, Elsevier, vol. 215(1), pages 84-117.
- Polanski, Arnold & Stoja, Evarist & Zhang, Ren, 2013. "Multidimensional risk and risk dependence," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3286-3294.