IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v117y2003i1p1-19.html
   My bibliography  Save this item

A simple estimator for nonlinear error in variable models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
  2. Margherita Comola & Marcel Fafchamps, 2017. "The Missing Transfers: Estimating Misreporting in Dyadic Data," Economic Development and Cultural Change, University of Chicago Press, vol. 65(3), pages 549-582.
  3. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
  4. Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2022. "Tweedie-type formulae for a multivariate Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).
  5. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
  6. Chen, Xiaohong & Hu, Yingyao & Lewbel, Arthur, 2008. "Nonparametric identification of regression models containing a misclassified dichotomous regressor without instruments," Economics Letters, Elsevier, vol. 100(3), pages 381-384, September.
  7. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
  8. Comola, Margherita & Fafchamps, Marcel, 2014. "Estimating Mis-reporting in Dyadic Data: Are Transfers Mutually Beneficial?," IZA Discussion Papers 8664, Institute of Labor Economics (IZA).
  9. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
  10. Li, Zhimin & Ligon, Ethan, 2020. "Inferring informal risk-sharing regimes: Evidence from rural Tanzania," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 941-955.
  11. Sule Alan & Orazio Attanasio & Martin Browning, 2009. "Estimating Euler equations with noisy data: two exact GMM estimators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(2), pages 309-324, March.
  12. Erich Battistin & Mario Padula, 2016. "Survey instruments and the reports of consumption expenditures: evidence from the consumer expenditure surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 559-581, February.
  13. Christine Mulhern & Isaac M. Opper, 2021. "Measuring and Summarizing the Multiple Dimensions of Teacher Effectiveness," CESifo Working Paper Series 9263, CESifo.
  14. Raymond Carroll & Xiaohong Chen & Yingyao Hu, 2010. "Identification and estimation of nonlinear models using two samples with nonclassical measurement errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 379-399.
  15. Natalia, Khorunzhina & Wayne Roy, Gayle, 2011. "Heterogenous intertemporal elasticity of substitution and relative risk aversion: estimation of optimal consumption choice with habit formation and measurement errors," MPRA Paper 34329, University Library of Munich, Germany.
  16. Irina Khvostova & Alexander Larin & Anna Novak, 2016. "Euler Equation with Habits and Measurement Errors: Estimates on Russian Micro Data," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(4), pages 395-409.
  17. Sule Alan & Martin Browning, 2010. "Estimating Intertemporal Allocation Parameters using Synthetic Residual Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(4), pages 1231-1261.
  18. Kirill Evdokimov & Andrei Zeleneev, 2024. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 05/24, Institute for Fiscal Studies.
  19. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
  20. Huixia Judy Wang & Leonard A. Stefanski & Zhongyi Zhu, 2012. "Corrected-loss estimation for quantile regression with covariate measurement errors," Biometrika, Biometrika Trust, vol. 99(2), pages 405-421.
  21. Wu, Jianghong & Song, Weixing, 2015. "On Hong–Tamer’s estimator in nonlinear errors-in-variable regression models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 165-175.
  22. Irina Khvostova & Alexander Larin & Anna Novak, 2016. "The Euler Equation with Habits and Measurement Errors: Estimates on Russian Micro Data," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(4), pages 395-409, September.
  23. Yuanshan Wu & Yanyuan Ma & Guosheng Yin, 2015. "Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1670-1683, December.
  24. Lechner Sandra & Pohlmeier Winfried, 2005. "Data Masking by Noise Addition and the Estimation of Nonparametric Regression Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(5), pages 517-528, October.
  25. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
  26. Comte, F. & Lacour, C. & Rozenholc, Y., 2010. "Adaptive estimation of the dynamics of a discrete time stochastic volatility model," Journal of Econometrics, Elsevier, vol. 154(1), pages 59-73, January.
  27. Han Hong, 2010. "Comment for identification and estimation of nonlinear models using two samples with nonclassical measurement errors, by Carroll, Chen and Hu," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 405-408.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.