IDEAS home Printed from https://ideas.repec.org/r/eee/ecmode/v28y2011i1-2p557-567.html
   My bibliography  Save this item

Macroeconomics, finance, commodities: Interactions with carbon markets in a data-rich model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Qi, Haozhi & Wu, Tiantian & Chen, Hao & Lu, Xiuling, 2023. "Time-frequency connectedness and cross-quantile dependence between carbon emission trading and commodity markets: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
  2. Luís Aguiar-Conraria & Maria Joana Soares & Rita Sousa, 2017. "California´s Carbon Market and Energy Prices: A Wavelet Analysis," NIPE Working Papers 13/2017, NIPE - Universidade do Minho.
  3. Bastianin, Andrea & Mirto, Elisabetta & Qin, Yan & Rossini, Luca, 2024. "What drives the European carbon market? Macroeconomic factors and forecasts," FEEM Working Papers 339740, Fondazione Eni Enrico Mattei (FEEM).
  4. Minggang Wang & Chenyu Hua & Hua Xu, 2022. "Dynamic Linkages among Carbon, Energy and Financial Markets: Multiplex Recurrence Network Approach," Mathematics, MDPI, vol. 10(11), pages 1-23, May.
  5. Saeed, Asif & Chaudhry, Sajid M. & Arif, Ahmed & Ahmed, Rizwan, 2023. "Spillover of energy commodities and inflation in G7 plus Chinese economies," Energy Economics, Elsevier, vol. 127(PA).
  6. Marc Lamphiere & Jonathan Blackledge & Derek Kearney, 2021. "Carbon Futures Trading and Short-Term Price Prediction: An Analysis Using the Fractal Market Hypothesis and Evolutionary Computing," Mathematics, MDPI, vol. 9(9), pages 1-32, April.
  7. Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
  8. Julien Chevallier, 2013. "Carbon trading: past, present and future," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 21, pages 471-489, Edward Elgar Publishing.
  9. Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
  10. Chune Young Chung & Minkyu Jeong & Jason Young, 2018. "The Price Determinants of the EU Allowance in the EU Emissions Trading Scheme," Sustainability, MDPI, vol. 10(11), pages 1-29, November.
  11. Yu, Jongmin & Mallory, Mindy L., 2014. "Exchange rate effect on carbon credit price via energy markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 145-161.
  12. Wen, Fenghua & Wang, Kangsheng & Zeng, Aiqing, 2024. "Return spillover across the carbon market and financial markets: A quantile-based approach," Research in International Business and Finance, Elsevier, vol. 69(C).
  13. Chunguang Sheng & Guangyu Wang & Yude Geng & Lirong Chen, 2020. "The Correlation Analysis of Futures Pricing Mechanism in China’s Carbon Financial Market," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
  14. Wang, Jiqian & Guo, Xiaozhu & Tan, Xueping & Chevallier, Julien & Ma, Feng, 2023. "Which exogenous driver is informative in forecasting European carbon volatility: Bond, commodity, stock or uncertainty?," Energy Economics, Elsevier, vol. 117(C).
  15. Wen, Fenghua & Wu, Nan & Gong, Xu, 2020. "China's carbon emissions trading and stock returns," Energy Economics, Elsevier, vol. 86(C).
  16. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
  17. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
  18. Cristiano Salvagnin & Aldo Glielmo & Maria Elena De Giuli & Antonietta Mira, 2024. "Investigating the price determinants of the European Emission Trading System: a non-parametric approach," Quantitative Finance, Taylor & Francis Journals, vol. 24(10), pages 1529-1544, October.
  19. Libo Yin & Liyan Han, 2016. "Macroeconomic impacts on commodity prices: China vs. the United States," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 489-500, March.
  20. Xu, Yingying & Dai, Yifan & Guo, Lingling & Chen, Jingjing, 2024. "Leveraging machine learning to forecast carbon returns: Factors from energy markets," Applied Energy, Elsevier, vol. 357(C).
  21. Frank Venmans, 2015. "Capital market response to emission allowance prices: a multivariate GARCH approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 577-620, October.
  22. Bredin, Don & Hyde, Stuart & Muckley, Cal, 2014. "A microstructure analysis of the carbon finance market," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 222-234.
  23. Man, Yuanyuan & Zhang, Sunpei & He, Yongda, 2024. "Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1397-1416.
  24. Chevallier, Julien, 2013. "Variance risk-premia in CO2 markets," Economic Modelling, Elsevier, vol. 31(C), pages 598-605.
  25. Yang Liu & Xueqing Yang & Mei Wang, 2021. "Global Transmission of Returns among Financial, Traditional Energy, Renewable Energy and Carbon Markets: New Evidence," Energies, MDPI, vol. 14(21), pages 1-32, November.
  26. Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
  27. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
  28. Chen, Hao & Xu, Chao, 2022. "The impact of cryptocurrencies on China's carbon price variation during COVID-19: A quantile perspective," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.