IDEAS home Printed from https://ideas.repec.org/r/eee/dyncon/v25y2001i9p1273-1303.html
   My bibliography  Save this item

Approximating and simulating the stochastic growth model: Parameterized expectations, neural networks, and the genetic algorithm

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fernández-Villaverde, Jesús & Ebrahimi Kahou, Mahdi & Perla, Jesse & Sood, Arnav, 2021. "Exploiting Symmetry in High-Dimensional Dynamic Programming," CEPR Discussion Papers 16285, C.E.P.R. Discussion Papers.
  2. Pedro Afonso Fernandes, 2024. "Forecasting with Neuro-Dynamic Programming," Papers 2404.03737, arXiv.org.
  3. S. Sirakaya & Stephen Turnovsky & M. Alemdar, 2006. "Feedback Approximation of the Stochastic Growth Model by Genetic Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 185-206, May.
  4. G. C. LIM & PAUL D. McNELIS, 2002. "Central Bank Learning, Terms Of Trade Shocks & Currency Risks: Should Only Inflation Matter For Monetary Policy?," Department of Economics - Working Papers Series 831, The University of Melbourne.
  5. Richard Dennis, 2004. "Specifying and estimating New Keynesian models with instrument rules and optimal monetary policies," Working Paper Series 2004-17, Federal Reserve Bank of San Francisco.
  6. Lim, G. C. & McNelis, Paul D., 2004. "Learning and the monetary policy strategy of the European Central Bank," Journal of International Money and Finance, Elsevier, vol. 23(7-8), pages 997-1010.
  7. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the curse of dimensionality: quantitative economics with deep learning," Working Papers 2444, Banco de España.
  8. JOSEPH Charles & DEWANDARU Janu & GUNADI Iman, 2010. "Playing Hard or Soft? : A Simulation of Indonesian Monetary Policy in Targeting Low Inflation Using a Dynamic General Equilibrium Model," EcoMod2003 330700074, EcoMod.
  9. Lim, G.C. & McNelis, Paul D., 2007. "Inflation targeting, learning and Q volatility in small open economies," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3699-3722, November.
  10. Lepetyuk, Vadym & Maliar, Lilia & Maliar, Serguei, 2020. "When the U.S. catches a cold, Canada sneezes: A lower-bound tale told by deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
  11. Richard Dennis, 2006. "The frequency of price adjustment and New Keynesian business cycle dynamics," Working Paper Series 2006-22, Federal Reserve Bank of San Francisco.
  12. G. Lim & Paul Mcnelis, 2006. "Central Bank Learning and Taylor Rules with Sticky Import Prices," Computational Economics, Springer;Society for Computational Economics, vol. 28(2), pages 155-175, September.
  13. McAdam, Peter & McNelis, Paul, 2005. "Forecasting inflation with thick models and neural networks," Economic Modelling, Elsevier, vol. 22(5), pages 848-867, September.
  14. Javier J. Pérez, 2004. "A Log-Linear Homotopy Approach to Initialize the Parameterized Expectations Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 24(1), pages 59-75, August.
  15. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
  16. Maliar, Lilia & Maliar, Serguei, 2022. "Deep learning classification: Modeling discrete labor choice," Journal of Economic Dynamics and Control, Elsevier, vol. 135(C).
  17. G.C. Lim & Paul D. McNelis, 2001. "Central Bank Learning, Terms of Trade Shocks & Currency Risk: Should Exchange Rate Volatility Matter for Monetary Policy?," Boston College Working Papers in Economics 509, Boston College Department of Economics.
  18. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
  19. Roumasset, James A. & Wada, Christopher A., 2012. "Ordering the extraction of renewable resources: The case of multiple aquifers," Resource and Energy Economics, Elsevier, vol. 34(1), pages 112-128.
  20. Marlon Azinovic & Luca Gaegauf & Simon Scheidegger, 2022. "Deep Equilibrium Nets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1471-1525, November.
  21. Shaw, Philip, 2014. "A nonparametric approach to solving a simple one-sector stochastic growth model," Economics Letters, Elsevier, vol. 125(3), pages 447-450.
  22. Heer, Burkhard & Maußner, Alfred, 2008. "Computation Of Business Cycle Models: A Comparison Of Numerical Methods," Macroeconomic Dynamics, Cambridge University Press, vol. 12(5), pages 641-663, November.
  23. Maliar, Lilia & Maliar, Serguei & Winant, Pablo, 2021. "Deep learning for solving dynamic economic models," Journal of Monetary Economics, Elsevier, vol. 122(C), pages 76-101.
  24. Adalbert Mayer, 2022. "An Agent-Based Macroeconomic Model with Endogenous Intertemporal Decision Rules," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 48(4), pages 548-579, October.
  25. Lim, G.C. & McNelis, Paul D., 2007. "Central bank learning, terms of trade shocks and currency risk: Should only inflation matter for monetary policy?," Journal of International Money and Finance, Elsevier, vol. 26(6), pages 865-886, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.