IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v51y2007i12p6252-6268.html
   My bibliography  Save this item

A robust estimator for the tail index of Pareto-type distributions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Schluter, Christian & Trede, Mark, 2008. "Identifying multiple outliers in heavy-tailed distributions with an application to market crashes," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 700-713, September.
  2. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang, 2022. "Cyber Loss Model Risk Translates to Premium Mispricing and Risk Sensitivity," Papers 2202.10588, arXiv.org, revised Mar 2023.
  3. Rastislav Potocký & Helmut Waldl & Milan Stehlík, 2014. "On Sums of Claims and their Applications in Analysis of Pension Funds and Insurance Products," Prague Economic Papers, Prague University of Economics and Business, vol. 2014(3), pages 349-370.
  4. Paolo Brunori & Pedro Salas-Rojo & Paolo Verme, 2022. "Estimating Inequality with Missing Incomes," Working Papers 616, ECINEQ, Society for the Study of Economic Inequality.
  5. Yuri Goegebeur & Armelle Guillou & Théo Rietsch, 2015. "Robust conditional Weibull-type estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 479-514, June.
  6. Goegebeur, Yuri & Guillou, Armelle & Verster, Andréhette, 2014. "Robust and asymptotically unbiased estimation of extreme quantiles for heavy tailed distributions," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 108-114.
  7. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
  8. Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
  9. Milan Stehlík & Rastislav Potocký & Helmut Waldl & Zdeněk Fabián, 2010. "On the favorable estimation for fitting heavy tailed data," Computational Statistics, Springer, vol. 25(3), pages 485-503, September.
  10. repec:jss:jstsof:37:i03 is not listed on IDEAS
  11. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
  12. Minkah, Richard & de Wet, Tertius & Ghosh, Abhik, 2022. "Robust Extreme Quantile Estimation for Pareto-Type tails through an Exponential Regression Model," AfricArxiv hf7vk, Center for Open Science.
  13. Härdle, Wolfgang Karl & Ling, Chengxiu, 2018. "How Sensitive are Tail-related Risk Measures in a Contamination Neighbourhood?," IRTG 1792 Discussion Papers 2018-010, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  14. Chengping Gong & Chengxiu Ling, 2018. "Robust Estimations for the Tail Index of Weibull-Type Distribution," Risks, MDPI, vol. 6(4), pages 1-15, October.
  15. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
  16. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
  17. Abhik Ghosh, 2017. "Divergence based robust estimation of the tail index through an exponential regression model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 181-213, June.
  18. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
  19. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
  20. Beran, Jan & Schell, Dieter, 2012. "On robust tail index estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3430-3443.
  21. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
  22. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
  23. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
  24. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
  25. Jan Beran & Dieter Schell & Milan Stehlík, 2014. "The harmonic moment tail index estimator: asymptotic distribution and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 193-220, February.
  26. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
  27. Fabrizi, Enrico & Trivisano, Carlo, 2016. "Small area estimation of the Gini concentration coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 223-234.
  28. Michał Brzeziński, 2013. "Robust estimation of the Pareto index: A Monte Carlo Analysis," Working Papers 2013-32, Faculty of Economic Sciences, University of Warsaw.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.