IDEAS home Printed from https://ideas.repec.org/p/war/wpaper/2013-32.html
   My bibliography  Save this paper

Robust estimation of the Pareto index: A Monte Carlo Analysis

Author

Listed:
  • Michał Brzeziński

    (Faculty of Economic Sciences, University of Warsaw)

Abstract

The Pareto distribution is often used in many areas of economics to model the right tail of heavy-tailed distributions. However, the standard method of estimating the shape parameter (the Pareto index) of this distribution– the maximum likelihood estimator (MLE) – is non-robust, in the sense that it is very sensitive to extreme observations, data contamination or model deviation. In recent years, a number of robust estimators for the Pareto index have been proposed, which correct the deficiency of the MLE. However, little is known about the performance of these estimators in small-sample setting, which often occurs in practice. This paper investigates the small-sample properties of the most popular robust estimators for the Pareto index, including the optimal B-robust estimator (OBRE) (Victoria-Feser and Ronchetti, 1994, The Canadian Journal of Statistics 22: 247–258), the weighted maximum likelihood estimator (WMLE) (Dupuis and Victoria-Feser, 2006, Canadian Journal of Statistics 34: 639–658), the generalized median estimator (GME) (Brazauskas and Serfling, 2001a, Extremes 3, 231–249), the partial density component estimator (PDCE) (Vandewalle et al., 2007, Computational Statistics & Data Analysis 51: 6252–6268), and the probability integral transform statistic estimator (PITSE) (Finkelstein et al., 2006, North American Actuarial Journal 10, 1–10). Monte Carlo simulations show that the PITSE offers the desired compromise between ease of use and power to protect against outliers in the small-sample setting.

Suggested Citation

  • Michał Brzeziński, 2013. "Robust estimation of the Pareto index: A Monte Carlo Analysis," Working Papers 2013-32, Faculty of Economic Sciences, University of Warsaw.
  • Handle: RePEc:war:wpaper:2013-32
    as

    Download full text from publisher

    File URL: http://www.wne.uw.edu.pl/inf/wyd/WP/WNE_WP117.pdf
    File Function: First version, 2013
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xavier Gabaix & Augustin Landier, 2008. "Why has CEO Pay Increased So Much?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(1), pages 49-100.
    2. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    3. Mehmet A. Ulubaşoğlu & Bharat R. Hazari, 2004. "Zipf's law strikes again: the case of tourism," Journal of Economic Geography, Oxford University Press, vol. 4(4), pages 459-472, August.
    4. Klass, Oren S. & Biham, Ofer & Levy, Moshe & Malcai, Ofer & Solomon, Sorin, 2006. "The Forbes 400 and the Pareto wealth distribution," Economics Letters, Elsevier, vol. 90(2), pages 290-295, February.
    5. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    6. Michal Brzezinski, 2015. "Relative Risk Aversion and Power‐Law Distribution of Macroeconomic Disasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 170-175, January.
    7. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    8. Niklas Wagner & Terry Marsh, 2004. "Tail index estimation in small smaples Simulation results for independent and ARCH-type financial return models," Statistical Papers, Springer, vol. 45(4), pages 545-561, October.
    9. N/A, 2004. "Index for 2004," European Union Politics, , vol. 5(4), pages 511-512, December.
    10. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    11. Ramsay, Colin M., 2003. "A solution to the ruin problem for Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 109-116, August.
    12. Beran, Jan & Schell, Dieter, 2012. "On robust tail index estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3430-3443.
    13. Frank A. Cowell, 2008. "Income Distribution and Inequality," Chapters, in: John B. Davis & Wilfred Dolfsma (ed.), The Elgar Companion to Social Economics, chapter 13, Edward Elgar Publishing.
    14. Vytaras Brazauskas & Robert Serfling, 2000. "Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 12-27.
    15. Soo, Kwok Tong, 2005. "Zipf's Law for cities: a cross-country investigation," Regional Science and Urban Economics, Elsevier, vol. 35(3), pages 239-263, May.
    16. Clementi, F. & Gallegati, M., 2005. "Power law tails in the Italian personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 427-438.
    17. Jeroen Hinloopen & Charles van Marrewijk, 2012. "Power laws and comparative advantage," Applied Economics, Taylor & Francis Journals, vol. 44(12), pages 1483-1507, April.
    18. Vandewalle, B. & Beirlant, J. & Christmann, A. & Hubert, M., 2007. "A robust estimator for the tail index of Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6252-6268, August.
    19. Frank Cowell & Maria-Pia Victoria-Feser, 2007. "Robust stochastic dominance: A semi-parametric approach," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(1), pages 21-37, April.
    20. Gaffeo, Edoardo & Gallegati, Mauro & Giulioni, Gianfranco & Palestrini, Antonio, 2003. "Power laws and macroeconomic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 408-416.
    21. Bellio, Ruggero, 2007. "Algorithms for bounded-influence estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2531-2541, February.
    22. Cowell, Frank A & Victoria-Feser, Maria-Pia, 1996. "Robustness Properties of Inequality Measures," Econometrica, Econometric Society, vol. 64(1), pages 77-101, January.
    23. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    24. Erzo G. J. Luttmer, 2007. "Selection, Growth, and the Size Distribution of Firms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1103-1144.
    25. Andreas Alfons & Matthias Templ & Peter Filzmoser, 2013. "Robust estimation of economic indicators from survey samples based on Pareto tail modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(2), pages 271-286, March.
    26. Casey B. Mulligan & Andrei Shleifer, 2005. "The Extent of the Market and the Supply of Regulation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(4), pages 1445-1473.
    27. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Silvia De Nicol`o & Maria Rosaria Ferrante & Silvia Pacei, 2021. "Mind the Income Gap: Bias Correction of Inequality Estimators in Small-Sized Samples," Papers 2107.08950, arXiv.org, revised May 2023.
    3. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    3. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "Optimal threshold for Pareto tail modelling in the presence of outliers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 169-180.
    4. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    5. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    6. Stephen P. Jenkins, 2017. "Pareto Models, Top Incomes and Recent Trends in UK Income Inequality," Economica, London School of Economics and Political Science, vol. 84(334), pages 261-289, April.
    7. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2019. "A robust and efficient estimator for the tail index of inverse Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 431-439.
    8. Bluhm, Richard & Krause, Melanie, 2022. "Top lights: Bright cities and their contribution to economic development," Journal of Development Economics, Elsevier, vol. 157(C).
    9. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.
    10. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    11. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    12. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2021. "Measuring income inequality: A robust semi-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    13. Bluhm, Richard & Krause, Melanie, 2022. "Top lights: Bright cities and their contribution to economic development," Journal of Development Economics, Elsevier, vol. 157(C).
    14. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    15. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    16. Gu, Zhiye & Ibragimov, Rustam, 2018. "The “Cubic Law of the Stock Returns” in emerging markets," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 182-190.
    17. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman, 2018. "A robust semi-parametric approach for measuring income inequality in Malaysia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1-13.
    18. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    19. di Giovanni, Julian & Levchenko, Andrei A. & Rancière, Romain, 2011. "Power laws in firm size and openness to trade: Measurement and implications," Journal of International Economics, Elsevier, vol. 85(1), pages 42-52, September.
    20. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.

    More about this item

    Keywords

    Pareto distribution; Pareto index; power-law distribution; robust estimation; Monte Carlo simulation; small-sample performance;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2013-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.