IDEAS home Printed from https://ideas.repec.org/r/eee/chsofr/v135y2020ics0960077920302290.html
   My bibliography  Save this item

Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sinitsyn, E. V. & Tolmachev, A. V. & Ovchinnikov, A. S., 2020. "Socio-economic factors in the spread of SARS-COV-2 across Russian regions," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 6(3), pages 129-145.
  2. Rafael Pérez Abreu C. & Samantha Estrada & Héctor de-la-Torre-Gutiérrez, 2021. "A Two-Step Polynomial and Nonlinear Growth Approach for Modeling COVID-19 Cases in Mexico," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
  3. Alaeddine Mihoub & Hosni Snoun & Moez Krichen & Montassar Kahia & Riadh Bel Hadj Salah, 2020. "Predicting COVID-19 Spread Level using Socio-Economic Indicators and Machine Learning Techniques," Post-Print hal-03002886, HAL.
  4. Milad Haghani & Michiel C. J. Bliemer, 2020. "Covid-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCoV literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2695-2726, December.
  5. Maher Abida & Emna Mnif, 2023. "Investor Attention in Cryptocurrency Markets: Examining the Effects of Vaccination and COVID-19 Spread through a Wavelet Approach," International Journal of Economics and Financial Issues, Econjournals, vol. 13(5), pages 43-51, September.
  6. Dong-Her Shih & Ting-Wei Wu & Ming-Hung Shih & Min-Jui Yang & David C. Yen, 2022. "A Novel βSA Ensemble Model for Forecasting the Number of Confirmed COVID-19 Cases in the US," Mathematics, MDPI, vol. 10(5), pages 1-15, March.
  7. Vinod, Dasari Naga & Prabaharan, S.R.S., 2020. "Data science and the role of Artificial Intelligence in achieving the fast diagnosis of Covid-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  8. Aman Khakharia & Vruddhi Shah & Sankalp Jain & Jash Shah & Amanshu Tiwari & Prathamesh Daphal & Mahesh Warang & Ninad Mehendale, 2021. "Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 1-19, March.
  9. Jiarui Fan & Haifeng Du & Yang Wang & Xiaochen He, 2021. "The Effect of Local and Global Interventions on Epidemic Spreading," IJERPH, MDPI, vol. 18(23), pages 1-13, November.
  10. Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
  11. Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
  12. Paul, Ayan & Reja, Selim & Kundu, Sayani & Bhattacharya, Sabyasachi, 2021. "COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  13. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  14. Chichigina, Olga A. & Valenti, Davide, 2021. "Strongly super-Poisson statistics replaced by a wide-pulse Poisson process: The billiard random generator," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
  15. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
  16. Fredj, Haifa Ben & Chérif, Farouk, 2020. "Novel Corona virus disease infection in Tunisia: Mathematical model and the impact of the quarantine strategy," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  17. Hakyong Kim & Catherine Apio & Yeonghyeon Ko & Kyulhee Han & Taewan Goo & Gyujin Heo & Taehyun Kim & Hye Won Chung & Doeun Lee & Jisun Lim & Taesung Park, 2021. "Which National Factors Are Most Influential in the Spread of COVID-19?," IJERPH, MDPI, vol. 18(14), pages 1-22, July.
  18. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  19. Yanbing Bai & Lu Sun & Haoyu Liu & Chao Xie, 2021. "Using Bus Ticketing Big Data to Investigate the Behaviors of the Population Flow of Chinese Suburban Residents in the Post-COVID-19 Phase," IJERPH, MDPI, vol. 18(11), pages 1-16, June.
  20. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
  21. Parbat, Debanjan & Chakraborty, Monisha, 2020. "A python based support vector regression model for prediction of COVID19 cases in India," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  22. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  23. Swapnarekha, H. & Behera, Himansu Sekhar & Nayak, Janmenjoy & Naik, Bighnaraj, 2020. "Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  24. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  25. Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
  26. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
  27. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  28. Jeonghun Kim & Ohbyung Kwon, 2021. "A Model for Rapid Selection and COVID-19 Prediction with Dynamic and Imbalanced Data," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
  29. Koutsellis, Themistoklis & Nikas, Alexandros, 2020. "A predictive model and country risk assessment for COVID-19: An application of the Limited Failure Population concept," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.