IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v91y2012i1p90-97.html
   My bibliography  Save this item

Neural network controller for Active Demand-Side Management with PV energy in the residential sector

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
  2. Jiang, Huaiguang & Zhang, Yingchen & Chen, Yuche & Zhao, Changhong & Tan, Jin, 2018. "Power-traffic coordinated operation for bi-peak shaving and bi-ramp smoothing – A hierarchical data-driven approach," Applied Energy, Elsevier, vol. 229(C), pages 756-766.
  3. Parra, David & Patel, Martin K., 2016. "Effect of tariffs on the performance and economic benefits of PV-coupled battery systems," Applied Energy, Elsevier, vol. 164(C), pages 175-187.
  4. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
  5. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
  6. Ankit Kumar Srivastava & Ajay Shekhar Pandey & Rajvikram Madurai Elavarasan & Umashankar Subramaniam & Saad Mekhilef & Lucian Mihet-Popa, 2021. "A Novel Hybrid Feature Selection Method for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 14(24), pages 1-16, December.
  7. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
  8. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
  9. Bennett, Christopher J. & Stewart, Rodney A. & Lu, Jun Wei, 2015. "Development of a three-phase battery energy storage scheduling and operation system for low voltage distribution networks," Applied Energy, Elsevier, vol. 146(C), pages 122-134.
  10. Thomas, Dimitrios & D’Hoop, Gaspard & Deblecker, Olivier & Genikomsakis, Konstantinos N. & Ioakimidis, Christos S., 2020. "An integrated tool for optimal energy scheduling and power quality improvement of a microgrid under multiple demand response schemes," Applied Energy, Elsevier, vol. 260(C).
  11. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
  12. Francesco Liberati & Alessandro Di Giorgio, 2017. "Economic Model Predictive and Feedback Control of a Smart Grid Prosumer Node," Energies, MDPI, vol. 11(1), pages 1-23, December.
  13. Batman, Alp & Bagriyanik, F. Gul & Aygen, Z. Elif & Gül, Ömer & Bagriyanik, Mustafa, 2012. "A feasibility study of grid-connected photovoltaic systems in Istanbul, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5678-5686.
  14. Masa-Bote, D. & Castillo-Cagigal, M. & Matallanas, E. & Caamaño-Martín, E. & Gutiérrez, A. & Monasterio-Huelín, F. & Jiménez-Leube, J., 2014. "Improving photovoltaics grid integration through short time forecasting and self-consumption," Applied Energy, Elsevier, vol. 125(C), pages 103-113.
  15. Ankit Kumar Srivastava & Ajay Shekhar Pandey & Mohamad Abou Houran & Varun Kumar & Dinesh Kumar & Saurabh Mani Tripathi & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan, 2023. "A Day-Ahead Short-Term Load Forecasting Using M5P Machine Learning Algorithm along with Elitist Genetic Algorithm (EGA) and Random Forest-Based Hybrid Feature Selection," Energies, MDPI, vol. 16(2), pages 1-23, January.
  16. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2016. "Optimum community energy storage system for demand load shifting," Applied Energy, Elsevier, vol. 174(C), pages 130-143.
  17. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
  18. Zahra Pooranian & Jemal H. Abawajy & Vinod P & Mauro Conti, 2018. "Scheduling Distributed Energy Resource Operation and Daily Power Consumption for a Smart Building to Optimize Economic and Environmental Parameters," Energies, MDPI, vol. 11(6), pages 1-17, May.
  19. Niels Blaauwbroek & Phuong Nguyen & Han Slootweg, 2018. "Data-Driven Risk Analysis for Probabilistic Three-Phase Grid-Supportive Demand Side Management," Energies, MDPI, vol. 11(10), pages 1-18, September.
  20. Zhao, Jiayun & Kucuksari, Sadik & Mazhari, Esfandyar & Son, Young-Jun, 2013. "Integrated analysis of high-penetration PV and PHEV with energy storage and demand response," Applied Energy, Elsevier, vol. 112(C), pages 35-51.
  21. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
  22. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
  23. Enrico Telaretti & Mariano Ippolito & Luigi Dusonchet, 2015. "A Simple Operating Strategy of Small-Scale Battery Energy Storages for Energy Arbitrage under Dynamic Pricing Tariffs," Energies, MDPI, vol. 9(1), pages 1-20, December.
  24. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
  25. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
  26. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
  27. Rajanna, S. & Saini, R.P., 2016. "Employing demand side management for selection of suitable scenario-wise isolated integrated renewal energy models in an Indian remote rural area," Renewable Energy, Elsevier, vol. 99(C), pages 1161-1180.
  28. Mattia Dallapiccola & Grazia Barchi & Jennifer Adami & David Moser, 2021. "The Role of Flexibility in Photovoltaic and Battery Optimal Sizing towards a Decarbonized Residential Sector," Energies, MDPI, vol. 14(8), pages 1-18, April.
  29. Arghandeh, Reza & Woyak, Jeremy & Onen, Ahmet & Jung, Jaesung & Broadwater, Robert P., 2014. "Economic optimal operation of Community Energy Storage systems in competitive energy markets," Applied Energy, Elsevier, vol. 135(C), pages 71-80.
  30. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
  31. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
  32. Kyriakarakos, George & Piromalis, Dimitrios D. & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2013. "Intelligent demand side energy management system for autonomous polygeneration microgrids," Applied Energy, Elsevier, vol. 103(C), pages 39-51.
  33. Santos, João M. & Moura, Pedro S. & Almeida, Aníbal T. de, 2014. "Technical and economic impact of residential electricity storage at local and grid level for Portugal," Applied Energy, Elsevier, vol. 128(C), pages 254-264.
  34. Moustris, K. & Kavadias, K.A. & Zafirakis, D. & Kaldellis, J.K., 2020. "Medium, short and very short-term prognosis of load demand for the Greek Island of Tilos using artificial neural networks and human thermal comfort-discomfort biometeorological data," Renewable Energy, Elsevier, vol. 147(P1), pages 100-109.
  35. Zubair Khalid & Ghulam Abbas & Muhammad Awais & Thamer Alquthami & Muhammad Babar Rasheed, 2020. "A Novel Load Scheduling Mechanism Using Artificial Neural Network Based Customer Profiles in Smart Grid," Energies, MDPI, vol. 13(5), pages 1-23, February.
  36. Wu, Qiyan & Zhang, Xiaoling & Sun, Jingwei & Ma, Zhifei & Zhou, Chen, 2016. "Locked post-fossil consumption of urban decentralized solar photovoltaic energy: A case study of an on-grid photovoltaic power supply community in Nanjing, China," Applied Energy, Elsevier, vol. 172(C), pages 1-11.
  37. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
  38. Parra, David & Gillott, Mark & Norman, Stuart A. & Walker, Gavin S., 2015. "Optimum community energy storage system for PV energy time-shift," Applied Energy, Elsevier, vol. 137(C), pages 576-587.
  39. Langenmayr, Uwe & Wang, Weimin & Jochem, Patrick, 2020. "Unit commitment of photovoltaic-battery systems: An advanced approach considering uncertainties from load, electric vehicles, and photovoltaic," Applied Energy, Elsevier, vol. 280(C).
  40. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
  41. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
  42. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
  43. Erdinc, Ozan & Paterakis, Nikolaos G. & Pappi, Iliana N. & Bakirtzis, Anastasios G. & Catalão, João P.S., 2015. "A new perspective for sizing of distributed generation and energy storage for smart households under demand response," Applied Energy, Elsevier, vol. 143(C), pages 26-37.
  44. Cai, Jie & Zhang, Hao & Jin, Xing, 2019. "Aging-aware predictive control of PV-battery assets in buildings," Applied Energy, Elsevier, vol. 236(C), pages 478-488.
  45. Kallel, Randa & Boukettaya, Ghada & Krichen, Lotfi, 2015. "Demand side management of household appliances in stand-alone hybrid photovoltaic system," Renewable Energy, Elsevier, vol. 81(C), pages 123-135.
  46. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
  47. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
  48. Darcovich, K. & Kenney, B. & MacNeil, D.D. & Armstrong, M.M., 2015. "Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems," Applied Energy, Elsevier, vol. 141(C), pages 32-41.
  49. Hossain, M.J. & Saha, T.K. & Mithulananthan, N. & Pota, H.R., 2012. "Robust control strategy for PV system integration in distribution systems," Applied Energy, Elsevier, vol. 99(C), pages 355-362.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.