IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i6p2023-2030.html
   My bibliography  Save this item

Analysis of combined cooling, heating, and power systems based on source primary energy consumption

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mago, Pedro J. & Luck, Rogelio, 2013. "Evaluation of the potential use of a combined micro-turbine organic Rankine cycle for different geographic locations," Applied Energy, Elsevier, vol. 102(C), pages 1324-1333.
  2. Lu, Ding & Liu, Zijian & Bai, Yin & Cheng, Rui & Gong, Maoqiong, 2022. "Study on the multi-energy complementary absorption system applied for combined cooling and heating in cold winter and hot summer areas," Applied Energy, Elsevier, vol. 312(C).
  3. Alkasmoul, Fahad & Asaker, Mohammed & Widuch, Aleksander & Malicki, Marcin & Zwierzchowski, Ryszard & Wołowicz, Marcin, 2023. "Multigeneration source based on novel triple-component chiller configuration co-supplied with renewable and fossil energy operated in Arabic Peninsula conditions," Energy, Elsevier, vol. 263(PC).
  4. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
  5. Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
  6. Knizley, Alta A. & Mago, Pedro J. & Smith, Amanda D., 2014. "Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units," Energy Policy, Elsevier, vol. 66(C), pages 654-665.
  7. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
  8. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
  9. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
  10. Emily Spayde & Pedro J. Mago & Rogelio Luck, 2018. "Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings," Energies, MDPI, vol. 11(2), pages 1-17, January.
  11. Yu Liu & Shan Gao & Xin Zhao & Chao Zhang & Ningyu Zhang, 2017. "Coordinated Operation and Control of Combined Electricity and Natural Gas Systems with Thermal Storage," Energies, MDPI, vol. 10(7), pages 1-25, July.
  12. Gao, Penghui & Li, Wangliang & Cheng, Yongpan & Tong, YenWah & Dai, Yanjun & Wang, Ruzhu, 2014. "Thermodynamic performance assessment of CCHP system driven by different composition gas," Applied Energy, Elsevier, vol. 136(C), pages 599-610.
  13. Piacentino, Antonio & Barbaro, Chiara & Cardona, Fabio & Gallea, Roberto & Cardona, Ennio, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method," Applied Energy, Elsevier, vol. 111(C), pages 1204-1221.
  14. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
  15. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
  16. Farahnak, Mehdi & Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi & Dashti, Farshad, 2015. "Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes," Applied Energy, Elsevier, vol. 158(C), pages 203-219.
  17. Gao, Penghui & Dai, Yanjun & Tong, YenWah & Dong, Pengwei, 2015. "Energy matching and optimization analysis of waste to energy CCHP (combined cooling, heating and power) system with exergy and energy level," Energy, Elsevier, vol. 79(C), pages 522-535.
  18. Wencong Huang & Yufang Chang & Youxin Yuan, 2019. "Complementary Configuration and Optimal Energy Flow of CCHP-ORC Systems Using a Matrix Modeling Approach," Complexity, Hindawi, vol. 2019, pages 1-15, April.
  19. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
  20. G. Ciampi & A. Rosato & M. Scorpio & S. Sibilio, 2016. "Energy performance of a residential building-integrated micro-cogeneration system upon varying thermal load and control logic," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(1), pages 75-88.
  21. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
  22. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
  23. Emily Spayde & Pedro J. Mago & Heejin Cho, 2017. "Performance Evaluation of a Solar-Powered Regenerative Organic Rankine Cycle in Different Climate Conditions," Energies, MDPI, vol. 10(1), pages 1-20, January.
  24. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
  25. Stanek, Wojciech & Gazda, Wiesław & Kostowski, Wojciech, 2015. "Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy," Energy, Elsevier, vol. 92(P3), pages 279-289.
  26. Fang, Fang & Wei, Le & Liu, Jizhen & Zhang, Jianhua & Hou, Guolian, 2012. "Complementary configuration and operation of a CCHP-ORC system," Energy, Elsevier, vol. 46(1), pages 211-220.
  27. Popli, Sahil & Rodgers, Peter & Eveloy, Valerie, 2012. "Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization," Applied Energy, Elsevier, vol. 93(C), pages 624-636.
  28. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
  29. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
  30. Bo Tang & Gangfeng Gao & Xiangwu Xia & Xiu Yang, 2018. "Integrated Energy System Configuration Optimization for Multi-Zone Heat-Supply Network Interaction," Energies, MDPI, vol. 11(11), pages 1-18, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.