IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v279y2020ics0306261920311958.html
   My bibliography  Save this item

A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
  2. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
  3. Jiang, Qian & Mu, Yunfei & Jia, Hongjie & Cao, Yan & Wang, Zibo & Wei, Wei & Hou, Kai & Yu, Xiaodan, 2022. "A Stackelberg Game-based planning approach for integrated community energy system considering multiple participants," Energy, Elsevier, vol. 258(C).
  4. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
  5. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
  6. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
  7. Gejirifu De & Xinlei Wang & Xueqin Tian & Tong Xu & Zhongfu Tan, 2022. "A Collaborative Optimization Model for Integrated Energy System Considering Multi-Load Demand Response," Energies, MDPI, vol. 15(6), pages 1-26, March.
  8. Chen, Zhang & Liu, Jun & Liu, Xinglei, 2022. "GPU accelerated power flow calculation of integrated electricity and heat system with component-oriented modeling of district heating network," Applied Energy, Elsevier, vol. 305(C).
  9. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "Combined heating and cooling networks with part-load efficiency curves: Optimization based on energy hub concept," Applied Energy, Elsevier, vol. 307(C).
  10. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
  11. Zhang, Chaoyi & Jiao, Zaibin & Liu, Junshan & Ning, Keer, 2023. "Robust planning and economic analysis of park-level integrated energy system considering photovoltaic/thermal equipment," Applied Energy, Elsevier, vol. 348(C).
  12. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
  13. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
  14. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
  15. Xiaozhi Gao & Han Xiao & Shiwei Xu & Hsiung-Cheng Lin & Pengyu Chang, 2024. "What Is the Optimal Solution for Scheduling Multiple Energy Systems? Overview and Analysis of Integrated Energy Co-Dispatch Models," Energies, MDPI, vol. 17(18), pages 1-25, September.
  16. Su, Q. & Zhou, P. & Ding, H. & Xydis, G., 2024. "Transition towards a hybrid energy system: Combined effects of renewable portfolio standards and carbon emission trading," Energy Economics, Elsevier, vol. 135(C).
  17. Zhuang, Wennan & Zhou, Suyang & Gu, Wei & Chen, Xiaogang, 2021. "Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing," Applied Energy, Elsevier, vol. 290(C).
  18. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
  19. Meng, Anbo & Wu, Zhenbo & Zhang, Zhan & Xu, Xuancong & Tang, Yanshu & Xie, Zhifeng & Xian, Zikang & Zhang, Haitao & Luo, Jianqiang & Wang, Yu & Yan, Baiping & Yin, Hao, 2024. "Optimal scheduling of integrated energy system using decoupled distributed CSO with opposition-based learning and neighborhood re-dispatch strategy," Renewable Energy, Elsevier, vol. 224(C).
  20. An, Su & Wang, Honglei & Leng, Xiaoxia, 2022. "Optimal operation of multi-micro energy grids under distribution network in Southwest China," Applied Energy, Elsevier, vol. 309(C).
  21. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "How can combined heating and cooling networks benefit from thermal energy storage? Minimizing lifetime cost for different scenarios," Energy, Elsevier, vol. 243(C).
  22. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
  23. Jiang, Qian & Jia, Hongjie & Mu, Yunfei & Yu, Xiaodan & Wang, Zibo, 2024. "Bilateral planning and operation for integrated energy service provider and prosumers - A Nash bargaining-based method," Applied Energy, Elsevier, vol. 368(C).
  24. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
  25. Mu, Yunfei & Xu, Yurui & Cao, Yan & Chen, Wanqing & Jia, Hongjie & Yu, Xiaodan & Jin, Xiaolong, 2022. "A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model," Applied Energy, Elsevier, vol. 323(C).
  26. Kang Qian & Tong Lv & Yue Yuan, 2021. "Integrated Energy System Planning Optimization Method and Case Analysis Based on Multiple Factors and A Three-Level Process," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
  27. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in Western China," Energy, Elsevier, vol. 228(C).
  28. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
  29. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
  30. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
  31. Lyu, Jiawei & Zhang, Shenxi & Cheng, Haozhong & Yuan, Kai & Song, Yi, 2022. "A graph theory-based optimal configuration method of energy hub considering the integration of electric vehicles," Energy, Elsevier, vol. 243(C).
  32. Li, Peng & Wang, Zixuan & Wang, Jiahao & Yang, Weihong & Guo, Tianyu & Yin, Yunxing, 2021. "Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response," Energy, Elsevier, vol. 225(C).
  33. Zou, Juan & Yang, Xu & Liu, Zhongbing & Liu, Jiangyang & Zhang, Ling & Zheng, Jinhua, 2021. "Multiobjective bilevel optimization algorithm based on preference selection to solve energy hub system planning problems," Energy, Elsevier, vol. 232(C).
  34. Zeli Ye & Wentao Huang & Jinfeng Huang & Jun He & Chengxi Li & Yan Feng, 2023. "Optimal Scheduling of Integrated Community Energy Systems Based on Twin Data Considering Equipment Efficiency Correction Models," Energies, MDPI, vol. 16(3), pages 1-22, January.
  35. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).
  36. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).
  37. Qibo He & Changming Chen & Xin Fu & Shunjiang Yu & Long Wang & Zhenzhi Lin, 2024. "Joint Planning Method of Shared Energy Storage and Multi-Energy Microgrids Based on Dynamic Game with Perfect Information," Energies, MDPI, vol. 17(19), pages 1-20, September.
  38. Kiani-Moghaddam, Mohammad & Soltani, Mohsen N. & Kalogirou, Soteris A. & Mahian, Omid & Arabkoohsar, Ahmad, 2023. "A review of neighborhood level multi-carrier energy hubs—uncertainty and problem-solving process," Energy, Elsevier, vol. 281(C).
  39. Li, Chengzhou & Wang, Ningling & Wang, Zhuo & Dou, Xiaoxiao & Zhang, Yumeng & Yang, Zhiping & Maréchal, François & Wang, Ligang & Yang, Yongping, 2022. "Energy hub-based optimal planning framework for user-level integrated energy systems: Considering synergistic effects under multiple uncertainties," Applied Energy, Elsevier, vol. 307(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.