IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924020889.html
   My bibliography  Save this article

Hierarchical regulation strategy based on dynamic clustering for economic optimization of large-scale 5G base stations

Author

Listed:
  • Mu, Yunfei
  • Jiang, Xinyang
  • Ma, Xiaoyan
  • Zhang, Jiarui
  • Jia, Hongjie
  • Jin, Xiaolong
  • Yao, Boren

Abstract

Utilizing the backup energy storage potential of 5G base stations (BSs) for economic regulation is an essential strategy to provide flexibility to the power grid and reduce operational costs. However, the dimensionality of the decision variables for centralized regulation of large-scale BSs is substantial, thereby increasing the computational complexity. Furthermore, the traditional clustering method, which could enhance solution speed, fails to account for the spatiotemporal dynamics of the regulation potential induced by the tidal effect and the sleep mechanism of 5G BSs. This limitation affects the accuracy of regulation and the utilization of the BSs' regulable potential. Therefore, a hierarchical regulation strategy based on dynamic clustering for economic optimization of large-scale 5G BSs is proposed, where BSs are regulated at two levels: cluster and individual. Focusing on the changes in 5G BSs' regulation potential, a dynamic clustering method based on K-means is proposed, which considers the regulable capacity and geographical location of BSs over time and space, thereby reducing the computational scale. The method accounts for changes in the regulable capacity to modify clusters and dynamically aggregates them for modeling. Furthermore, the clustering regulation economic optimization model and in-cluster power allocation control model are established respectively at the cluster and individual levels to solve the corresponding regulation schemes. Due to the interaction between the clustering and regulation in the overall strategy, the optimal clustering and regulation scheme are determined through the iteration of dynamic clustering, clustering regulation and in-cluster allocation. The simulation with 2916 BSs in a test area is conducted. The results show that the computation time of the proposed strategy is reduced to 2.34 % of the centralized regulation. The maximum error of the regulable capacity and regulation scheme decrease by 21.93 % and 9.32 %. It demonstrates that the proposed strategy enhances the speed of large-scale 5G BSs regulation while ensuring the accuracy of regulation and utilization of the regulable potential.

Suggested Citation

  • Mu, Yunfei & Jiang, Xinyang & Ma, Xiaoyan & Zhang, Jiarui & Jia, Hongjie & Jin, Xiaolong & Yao, Boren, 2025. "Hierarchical regulation strategy based on dynamic clustering for economic optimization of large-scale 5G base stations," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020889
    DOI: 10.1016/j.apenergy.2024.124705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    2. Lin, Wei & Jin, Xiaolong & Jia, Hongjie & Mu, Yunfei & Xu, Tao & Xu, Xiandong & Yu, Xiaodan, 2021. "Decentralized optimal scheduling for integrated community energy system via consensus-based alternating direction method of multipliers," Applied Energy, Elsevier, vol. 302(C).
    3. Bao, Peng & Xu, Qingshan & Yang, Yongbiao & Nan, Yu & Wang, Yucui, 2024. "Efficient virtual power plant management strategy and Leontief-game pricing mechanism towards real-time economic dispatch support: A case study of large-scale 5G base stations," Applied Energy, Elsevier, vol. 358(C).
    4. Niu, Wen-jing & Luo, Tao & Yao, Xin-ru & Gong, Jin-tai & Huang, Qing-qing & Gao, Hao-yu & Feng, Zhong-kai, 2024. "Artificial intelligence-based response surface progressive optimality algorithm for operation optimization of multiple hydropower reservoirs," Energy, Elsevier, vol. 291(C).
    5. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Lei & Sun, Shiting & Zhang, Shiming & Zhang, Tao & Pu, Tianjiao, 2024. "Distributed restoration for integrated electricity-gas-heating energy systems with an iterative loop scheme," Energy, Elsevier, vol. 304(C).
    2. Zeli Ye & Wentao Huang & Jinfeng Huang & Jun He & Chengxi Li & Yan Feng, 2023. "Optimal Scheduling of Integrated Community Energy Systems Based on Twin Data Considering Equipment Efficiency Correction Models," Energies, MDPI, vol. 16(3), pages 1-22, January.
    3. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    4. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    5. Qibo He & Changming Chen & Xin Fu & Shunjiang Yu & Long Wang & Zhenzhi Lin, 2024. "Joint Planning Method of Shared Energy Storage and Multi-Energy Microgrids Based on Dynamic Game with Perfect Information," Energies, MDPI, vol. 17(19), pages 1-20, September.
    6. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    7. Meng, Anbo & Wu, Zhenbo & Zhang, Zhan & Xu, Xuancong & Tang, Yanshu & Xie, Zhifeng & Xian, Zikang & Zhang, Haitao & Luo, Jianqiang & Wang, Yu & Yan, Baiping & Yin, Hao, 2024. "Optimal scheduling of integrated energy system using decoupled distributed CSO with opposition-based learning and neighborhood re-dispatch strategy," Renewable Energy, Elsevier, vol. 224(C).
    8. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    9. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    10. Li, Peng & Wang, Jiahao & Jia, Hongjie & Li, Jianfeng & Pan, Youpeng, 2024. "Operation optimization of community integrated energy system: Rationality evaluation of operation scheme and a new solution approach," Applied Energy, Elsevier, vol. 375(C).
    11. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
    12. Kang Qian & Tong Lv & Yue Yuan, 2021. "Integrated Energy System Planning Optimization Method and Case Analysis Based on Multiple Factors and A Three-Level Process," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    13. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
    14. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
    15. Mu, Yunfei & Xu, Yurui & Cao, Yan & Chen, Wanqing & Jia, Hongjie & Yu, Xiaodan & Jin, Xiaolong, 2022. "A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model," Applied Energy, Elsevier, vol. 323(C).
    16. Zou, Juan & Yang, Xu & Liu, Zhongbing & Liu, Jiangyang & Zhang, Ling & Zheng, Jinhua, 2021. "Multiobjective bilevel optimization algorithm based on preference selection to solve energy hub system planning problems," Energy, Elsevier, vol. 232(C).
    17. Li, Chengzhou & Wang, Ningling & Wang, Zhuo & Dou, Xiaoxiao & Zhang, Yumeng & Yang, Zhiping & Maréchal, François & Wang, Ligang & Yang, Yongping, 2022. "Energy hub-based optimal planning framework for user-level integrated energy systems: Considering synergistic effects under multiple uncertainties," Applied Energy, Elsevier, vol. 307(C).
    18. Wang, Haiyang & Li, Ke & Zhang, Chenghui & Chen, Jianfei, 2024. "Capacity and operation joint optimization for integrated energy system based on Nash bargaining game," Energy, Elsevier, vol. 305(C).
    19. Chen, Binbin & Wu, Wenchuan & Guo, Qinglai & Sun, Hongbin, 2022. "An efficient optimal energy flow model for integrated energy systems based on energy circuit modeling in the frequency domain," Applied Energy, Elsevier, vol. 326(C).
    20. Lyu, Jiawei & Zhang, Shenxi & Cheng, Haozhong & Yuan, Kai & Song, Yi, 2022. "A graph theory-based optimal configuration method of energy hub considering the integration of electric vehicles," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.