My bibliography
Save this item
A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
- Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
- Hou, Yicheng & Qiu, Jun & Wang, Wei & He, Xibo & Ayyub, Mubashar & Shuai, Yong, 2022. "Preparation and performance improvement of chlorides/MgO ceramics shape-stabilized phase change materials with expanded graphite for thermal energy storage system," Applied Energy, Elsevier, vol. 316(C).
- Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
- Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
- Zhao, B.C. & Wang, R.Z., 2020. "A novel 3-D model of an industrial-scale tube-fin latent heat storage using salt hydrates with supercooling: A model validation," Energy, Elsevier, vol. 213(C).
- Tiwari, Vivek & Rai, Aakash C. & Srinivasan, P., 2021. "Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions," Renewable Energy, Elsevier, vol. 174(C), pages 305-319.
- Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
- Liu, Ming & Omaraa, Ehsan Shamil & Qi, Jia & Haseli, Pegah & Ibrahim, Jumal & Sergeev, Dmitry & Müller, Michael & Bruno, Frank & Majewski, Peter, 2021. "Review and characterisation of high-temperature phase change material candidates between 500 C and 700°C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
- Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
- Modi, Nishant & Wang, Xiaolin & Negnevitsky, Michael, 2023. "Experimental investigation of the effects of inclination, fin height, and perforation on the thermal performance of a longitudinal finned latent heat thermal energy storage," Energy, Elsevier, vol. 274(C).
- Luo, Qingyang & Liu, Xianglei & Xu, Qiao & Tian, Yang & Yao, Haichen & Wang, Jianguo & Lv, Shushan & Dang, Chunzhuo & Xuan, Yimin, 2023. "Ceramic nanoparticles enhancement of latent heat thermal energy storage properties for LiNO3/NaCl: Evaluation from material to system level," Applied Energy, Elsevier, vol. 331(C).
- Muhammad Saqib & Rafal Andrzejczyk, 2023. "A review of phase change materials and heat enhancement methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
- Jiang, Feng & Ge, Zhiwei & Ling, Xiang & Cang, Daqiang & Zhang, Lingling & Ding, Yulong, 2021. "Improved thermophysical properties of shape-stabilized NaNO3 using a modified diatomite-based porous ceramic for solar thermal energy storage," Renewable Energy, Elsevier, vol. 179(C), pages 327-338.
- Cao, Yufeng & Fan, Dongli & Lin, Shaohui & Ng, Flora T.T. & Pan, Qinmin, 2021. "Branched alkylated polynorbornene and 3D flower-like MoS2 nanospheres reinforced phase change composites with high thermal energy storage capacity and photothermal conversion efficiency," Renewable Energy, Elsevier, vol. 179(C), pages 687-695.
- Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
- Li, Chuan & Li, Qi & Ge, Ruihuan, 2023. "Comparison of performance enhancement in a shell and tube based latent heat thermal energy storage device containing different structured fins," Renewable Energy, Elsevier, vol. 206(C), pages 994-1006.
- Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
- Patricia Royo & Luis Acevedo & Álvaro J. Arnal & Maryori Diaz-Ramírez & Tatiana García-Armingol & Victor J. Ferreira & Germán Ferreira & Ana M. López-Sabirón, 2021. "Decision Support System of Innovative High-Temperature Latent Heat Storage for Waste Heat Recovery in the Energy-Intensive Industry," Energies, MDPI, vol. 14(2), pages 1-13, January.
- Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
- Milad Shirbani & Majid Siavashi & Mehdi Bidabadi, 2023. "Phase Change Materials Energy Storage Enhancement Schemes and Implementing the Lattice Boltzmann Method for Simulations: A Review," Energies, MDPI, vol. 16(3), pages 1-23, January.