My bibliography
Save this item
Multi-temporal assessment of power system flexibility requirement
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Yuanyuan & Zhao, Huiru & Qi, Ze & Li, Bingkang, 2024. "A two-stage low-carbon economic coordinated dispatching model for generation-load-storage resources considering flexible supply-demand balance," Applied Energy, Elsevier, vol. 373(C).
- Clerjon, Arthur & Perdu, Fabien, 2022. "Matching intermittent electricity supply and demand with electricity storage - An optimization based on a time scale analysis," Energy, Elsevier, vol. 241(C).
- Zhao, Mingzhe & Wang, Yimin & Wang, Xuebin & Chang, Jianxia & Chen, Yunhua & Zhou, Yong & Guo, Aijun, 2022. "Flexibility evaluation of wind-PV-hydro multi-energy complementary base considering the compensation ability of cascade hydropower stations," Applied Energy, Elsevier, vol. 315(C).
- Quanhui Che & Suhua Lou & Yaowu Wu & Xiangcheng Zhang & Xuebin Wang, 2019. "Optimal Scheduling of a Multi-Energy Power System with Multiple Flexible Resources and Large-Scale Wind Power," Energies, MDPI, vol. 12(18), pages 1-14, September.
- Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
- Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
- Yamujala, Sumanth & Kushwaha, Priyanka & Jain, Anjali & Bhakar, Rohit & Wu, Jianzhong & Mathur, Jyotirmay, 2021. "A stochastic multi-interval scheduling framework to quantify operational flexibility in low carbon power systems," Applied Energy, Elsevier, vol. 304(C).
- Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
- Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Ruan, Yingjun, 2020. "Capacity credit and market value analysis of photovoltaic integration considering grid flexibility requirements," Renewable Energy, Elsevier, vol. 159(C), pages 908-919.
- Yuanyuan, Zhang & Huiru, Zhao & Bingkang, Li, 2023. "Distributionally robust comprehensive declaration strategy of virtual power plant participating in the power market considering flexible ramping product and uncertainties," Applied Energy, Elsevier, vol. 343(C).
- Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
- Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
- Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Huclin, Sébastien & Ramos, Andrés & Chaves, José Pablo & Matanza, Javier & González-Eguino, Mikel, 2023. "A methodological approach for assessing flexibility and capacity value in renewable-dominated power systems: A Spanish case study in 2030," Energy, Elsevier, vol. 285(C).
- Deng, Xu & Lv, Tao & Hou, Xiaoran & Xu, Jie & Pi, Duyang & Liu, Feng & Li, Na, 2022. "Regional disparity of flexibility options for integrating variable renewable energy," Renewable Energy, Elsevier, vol. 192(C), pages 641-654.
- Olsen, Karen Pardos & Zong, Yi & You, Shi & Bindner, Henrik & Koivisto, Matti & Gea-Bermúdez, Juan, 2020. "Multi-timescale data-driven method identifying flexibility requirements for scenarios with high penetration of renewables," Applied Energy, Elsevier, vol. 264(C).
- Deng, Xu & Lv, Tao & Xu, Jie & Hou, Xiaoran & Liu, Feng, 2022. "Assessing the integration effect of inter-regional transmission on variable power generation under renewable energy consumption policy in China," Energy Policy, Elsevier, vol. 170(C).
- Göke, Leonard, 2021. "A graph-based formulation for modeling macro-energy systems," Applied Energy, Elsevier, vol. 301(C).
- Pichou, Marion & Dussartre, Virginie & Lâasri, Maxime & Keppler, Jan-Horst, 2023.
"The value of distributed flexibility for reducing generation and network reinforcement costs,"
Utilities Policy, Elsevier, vol. 82(C).
- Marion Pichoud & Virginie Dussartre & Maxime Lâasri & Jan Horst Keppler, 2023. "The value of distributed flexibility for reducing generation and network reinforcement costs," Post-Print hal-04278040, HAL.
- Vulic, Natasa & Rüdisüli, Martin & Orehounig, Kristina, 2023. "Evaluating energy flexibility requirements for high shares of variable renewable energy: A heuristic approach," Energy, Elsevier, vol. 270(C).
- Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
- Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).
- Xuejun Li & Jiaxin Qian & Changhai Yang & Boyang Chen & Xiang Wang & Zongnan Jiang, 2024. "New Power System Planning and Evolution Path with Multi-Flexibility Resource Coordination," Energies, MDPI, vol. 17(1), pages 1-20, January.
- Juan Liu & Minwei Liu & Zhimin Wang & Junwen Yang & Suhua Lou, 2022. "Multi-Flexibility Resources Planning for Power System Considering Carbon Trading," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
- Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Gharibvand, Hossein & Gharehpetian, G.B. & Anvari-Moghaddam, A., 2024. "A survey on microgrid flexibility resources, evaluation metrics and energy storage effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
- Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).