IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v237y2019icp618-634.html
   My bibliography  Save this item

Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Perugu, Harikishan & Collier, Sonya & Tan, Yi & Yoon, Seungju & Herner, Jorn, 2023. "Characterization of battery electric transit bus energy consumption by temporal and speed variation," Energy, Elsevier, vol. 263(PC).
  2. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
  3. Szabolcs Kocsis Szürke & Gábor Saly & István Lakatos, 2024. "Analyzing Energy Efficiency and Battery Supervision in Electric Bus Integration for Improved Urban Transport Sustainability," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
  4. Zongfei Wang & Patrick Jochem & Hasan Ümitcan Yilmaz & Lei Xu, 2022. "Integrating vehicle‐to‐grid technology into energy system models: Novel methods and their impact on greenhouse gas emissions," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 392-405, April.
  5. Ye Tao & Yupu Chen & Miaohua Huang & Lan Yang, 2023. "Data-Based Orderly Charging Strategy Considering Users’ Charging Choices," Energies, MDPI, vol. 16(19), pages 1-16, October.
  6. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
  7. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
  8. Bie, Yiming & Liu, Yajun & Li, Shiwu & Wang, Linhong, 2022. "HVAC operation planning for electric bus trips based on chance-constrained programming," Energy, Elsevier, vol. 258(C).
  9. Justin Fraselle & Sabine Louise Limbourg & Laura Vidal, 2021. "Cost and Environmental Impacts of a Mixed Fleet of Vehicles," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
  10. Xinkuo Xu & Xiaofeng Lv & Liyan Han, 2019. "Carbon Asset of Electrification: Valuing the Transition from Fossil Fuel-Powered Buses to Battery Electric Buses in Beijing," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
  11. Saadon Al-Ogaili, Ali & Ramasamy, Agileswari & Juhana Tengku Hashim, Tengku & Al-Masri, Ahmed N. & Hoon, Yap & Neamah Jebur, Mustafa & Verayiah, Renuga & Marsadek, Marayati, 2020. "Estimation of the energy consumption of battery driven electric buses by integrating digital elevation and longitudinal dynamic models: Malaysia as a case study," Applied Energy, Elsevier, vol. 280(C).
  12. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.
  13. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
  14. González, L.G. & Cordero-Moreno, Daniel & Espinoza, J.L., 2021. "Public transportation with electric traction: Experiences and challenges in an Andean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  15. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  16. Zhang, Jiahe & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Li, Haijun, 2023. "Hybrid characteristics of heterogeneous traffic flow mixed with electric vehicles considering the amplitude of acceleration and deceleration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
  17. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  18. Papa, Gregor & Santo Zarnik, Marina & Vukašinović, Vida, 2022. "Electric-bus routes in hilly urban areas: Overview and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  19. Hassan, Taimoor & Song, Huaming & Khan, Yasir & Kirikkaleli, Dervis, 2022. "Energy efficiency a source of low carbon energy sources? Evidence from 16 high-income OECD economies," Energy, Elsevier, vol. 243(C).
  20. Jian Chen & Fangyi Li & Ranran Yang & Dawei Ma, 2020. "Impacts of Increasing Private Charging Piles on Electric Vehicles’ Charging Profiles: A Case Study in Hefei City, China," Energies, MDPI, vol. 13(17), pages 1-17, August.
  21. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
  22. Schwarz, Marius & Auzépy, Quentin & Knoeri, Christof, 2020. "Can electricity pricing leverage electric vehicles and battery storage to integrate high shares of solar photovoltaics?," Applied Energy, Elsevier, vol. 277(C).
  23. Yuan Chen & Seok Swoo Cho, 2024. "Exploring Electric Vehicle Patent Trends through Technology Life Cycle and Social Network Analysis," Sustainability, MDPI, vol. 16(17), pages 1-27, September.
  24. Correa, G. & Muñoz, P.M. & Rodriguez, C.R., 2019. "A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus," Energy, Elsevier, vol. 187(C).
  25. Naihui Wang & Yulong Pei & Yi-Jia Wang, 2022. "Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
  26. Ka-Wai Ng & Hing-Yan Tong, 2024. "Comparisons of Driving Characteristics between Electric and Diesel-Powered Bus Operations along Identical Bus Routes," Sustainability, MDPI, vol. 16(12), pages 1-22, June.
  27. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
  28. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
  29. Kang, Zixuan & Ye, Zhongnan & Lam, Chor-Man & Hsu, Shu-Chien, 2023. "Sustainable electric vehicle charging coordination: Balancing CO2 emission reduction and peak power demand shaving," Applied Energy, Elsevier, vol. 349(C).
  30. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.
  31. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.