IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v195y2017icp786-799.html
   My bibliography  Save this item

Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pablo Durán Gómez & Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Carrasco Ortega, 2023. "Profitability of Alternative Battery Operation Strategies in Photovoltaic Self-Consumption Systems under Current Regulatory Framework and Electricity Prices in Spain," Energies, MDPI, vol. 16(21), pages 1-25, October.
  2. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
  3. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
  4. Despeghel, Jolien & Tant, Jeroen & Driesen, Johan, 2024. "Convex optimization of PV-battery system sizing and operation with non-linear loss models," Applied Energy, Elsevier, vol. 353(PA).
  5. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
  6. von Appen, J. & Braun, M., 2018. "Strategic decision making of distribution network operators and investors in residential photovoltaic battery storage systems," Applied Energy, Elsevier, vol. 230(C), pages 540-550.
  7. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
  8. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
  9. Pepa Ambrosio-Albalá & Catherine S. E. Bale & Andrew J. Pimm & Peter G. Taylor, 2020. "What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives," Energies, MDPI, vol. 13(24), pages 1-22, December.
  10. Angenendt, Georg & Zurmühlen, Sebastian & Figgener, Jan & Kairies, Kai-Philipp & Sauer, Dirk Uwe, 2020. "Providing frequency control reserve with photovoltaic battery energy storage systems and power-to-heat coupling," Energy, Elsevier, vol. 194(C).
  11. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings," Applied Energy, Elsevier, vol. 213(C), pages 11-21.
  12. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
  13. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
  14. Reza Bakhshi-Jafarabadi & Seyed Mahdi Seyed Mousavi, 2024. "Peak Load Shaving of Air Conditioning Loads via Rooftop Grid-Connected Photovoltaic Systems: A Case Study," Sustainability, MDPI, vol. 16(13), pages 1-13, July.
  15. Norbert Chamier-Gliszczynski & Grzegorz Trzmiel & Jarosław Jajczyk & Aleksandra Juszczak & Waldemar Woźniak & Mariusz Wasiak & Robert Wojtachnik & Krzysztof Santarek, 2023. "The Influence of Distributed Generation on the Operation of the Power System, Based on the Example of PV Micro-Installations," Energies, MDPI, vol. 16(3), pages 1-29, January.
  16. Martín, Mariano & Grossmann, Ignacio E., 2018. "Optimal integration of renewable based processes for fuels and power production: Spain case study," Applied Energy, Elsevier, vol. 213(C), pages 595-610.
  17. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
  18. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
  19. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
  20. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
  21. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
  22. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  23. Li, Yue & Luo, Hao & Cai, Hua, 2023. "Photovoltaic-battery powered bike share stations are not necessarily energy self-sufficient," Applied Energy, Elsevier, vol. 348(C).
  24. Schimpe, Michael & Naumann, Maik & Truong, Nam & Hesse, Holger C. & Santhanagopalan, Shriram & Saxon, Aron & Jossen, Andreas, 2018. "Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis," Applied Energy, Elsevier, vol. 210(C), pages 211-229.
  25. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
  26. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
  27. Berrueta, Alberto & Heck, Michael & Jantsch, Martin & Ursúa, Alfredo & Sanchis, Pablo, 2018. "Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants," Applied Energy, Elsevier, vol. 228(C), pages 1-11.
  28. Topalović, Zejneba & Haas, Reinhard & Ajanović, Amela & Hiesl, Albert, 2022. "Economics of electric energy storage. The case of Western Balkans," Energy, Elsevier, vol. 238(PA).
  29. Limpens, Gauthier & Jeanmart, Hervé, 2018. "Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium," Energy, Elsevier, vol. 152(C), pages 960-973.
  30. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  31. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.