IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v189y2017icp271-282.html
   My bibliography  Save this item

Combined optimization for offshore wind turbine micro siting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
  2. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2018. "Continuous adjoint formulation for wind farm layout optimization: A 2D implementation," Applied Energy, Elsevier, vol. 228(C), pages 2333-2345.
  3. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
  4. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
  5. Cazzaro, Davide & Koza, David Franz & Pisinger, David, 2023. "Combined layout and cable optimization of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 311(1), pages 301-315.
  6. Dinçer, A.Ersin & Demir, A. & Yılmaz, K., 2023. "Enhancing wind turbine site selection through a novel wake penalty criterion," Energy, Elsevier, vol. 283(C).
  7. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
  8. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
  9. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
  10. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
  11. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
  12. Wang, Ni & Li, Jian & Yu, Xiang & Zhou, Dao & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2020. "Optimal active and reactive power cooperative dispatch strategy of wind farm considering levelised production cost minimisation," Renewable Energy, Elsevier, vol. 148(C), pages 113-123.
  13. Jin, Rongsen & Hou, Peng & Yang, Guangya & Qi, Yuanhang & Chen, Cong & Chen, Zhe, 2019. "Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model," Applied Energy, Elsevier, vol. 254(C).
  14. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Liu, Zhou & Liu, Wen & Chen, Zhe & Blaabjerg, Frede, 2020. "Scheduling of wind-battery hybrid system in the electricity market using distributionally robust optimization," Renewable Energy, Elsevier, vol. 156(C), pages 47-56.
  15. Croonenbroeck, Carsten & Hennecke, David, 2021. "A comparison of optimizers in a unified standard for optimization on wind farm layout optimization," Energy, Elsevier, vol. 216(C).
  16. Wu, Yan & Xia, Tianqi & Wang, Yufei & Zhang, Haoran & Feng, Xiao & Song, Xuan & Shibasaki, Ryosuke, 2022. "A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network," Renewable Energy, Elsevier, vol. 185(C), pages 302-320.
  17. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
  18. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
  19. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
  20. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2018. "Optimal design of neighbouring offshore wind farms: A co-evolutionary approach," Applied Energy, Elsevier, vol. 209(C), pages 140-152.
  21. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
  22. Yang, Xiaolei & Pakula, Maggie & Sotiropoulos, Fotis, 2018. "Large-eddy simulation of a utility-scale wind farm in complex terrain," Applied Energy, Elsevier, vol. 229(C), pages 767-777.
  23. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2020. "Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods," Applied Energy, Elsevier, vol. 261(C).
  24. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.
  25. Butterwick, Thomas & Kheiri, Ahmed & Lulli, Guglielmo & Gromicho, Joaquim & Kreeft, Jasper, 2023. "Application of selection hyper-heuristics to the simultaneous optimisation of turbines and cabling within an offshore windfarm," Renewable Energy, Elsevier, vol. 208(C), pages 1-16.
  26. Magnus Daniel Kallinger & José Ignacio Rapha & Pau Trubat Casal & José Luis Domínguez-García, 2023. "Offshore Electrical Grid Layout Optimization for Floating Wind—A Review," Clean Technol., MDPI, vol. 5(3), pages 1-37, June.
  27. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  28. Guillem Armengol Barcos & Fernando Porté-Agel, 2023. "Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments," Energies, MDPI, vol. 17(1), pages 1-20, December.
  29. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
  30. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system," Renewable Energy, Elsevier, vol. 147(P1), pages 1418-1431.
  31. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
  32. Long Wang & Jianghai Wu & Zeling Tang & Tongguang Wang, 2019. "An Integration Optimization Method for Power Collection Systems of Offshore Wind Farms," Energies, MDPI, vol. 12(20), pages 1-16, October.
  33. Alan Ortiz Contreras & Mohamed Badaoui & David Sebastián Baltazar, 2024. "The Optimal Selection of Renewable Energy Systems Based on MILP for Two Zones in Mexico," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
  34. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
  35. Wang, Long & Wu, Jianghai & Wang, Tongguang & Han, Ran, 2020. "An optimization method based on random fork tree coding for the electrical networks of offshore wind farms," Renewable Energy, Elsevier, vol. 147(P1), pages 1340-1351.
  36. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
  37. Hou, Peng & Enevoldsen, Peter & Hu, Weihao & Chen, Cong & Chen, Zhe, 2017. "Offshore wind farm repowering optimization," Applied Energy, Elsevier, vol. 208(C), pages 834-844.
  38. Sedaghat, Ahmad & Hassanzadeh, Arash & Jamali, Jamaloddin & Mostafaeipour, Ali & Chen, Wei-Hsin, 2017. "Determination of rated wind speed for maximum annual energy production of variable speed wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 781-789.
  39. Lo Brutto, Ottavio A. & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2017. "Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization," Applied Energy, Elsevier, vol. 204(C), pages 653-666.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.