IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v183y2016icp1065-1074.html
   My bibliography  Save this item

Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
  2. Kamalanathan Ganesan & João Tomé Saraiva & Ricardo J. Bessa, 2019. "On the Use of Causality Inference in Designing Tariffs to Implement More Effective Behavioral Demand Response Programs," Energies, MDPI, vol. 12(14), pages 1-20, July.
  3. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
  4. Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
  5. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
  6. Bo wang & Nana Deng & Wenhui Zhao & Zhaohua Wang, 2022. "Residential power demand side management optimization based on fine-grained mixed frequency data," Annals of Operations Research, Springer, vol. 316(1), pages 603-622, September.
  7. Fernández, David & Pozo, Carlos & Folgado, Rubén & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2017. "Multiperiod model for the optimal production planning in the industrial gases sector," Applied Energy, Elsevier, vol. 206(C), pages 667-682.
  8. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
  9. Edens, Marga G. & Lavrijssen, Saskia A.C.M., 2019. "Balancing public values during the energy transition – How can German and Dutch DSOs safeguard sustainability?," Energy Policy, Elsevier, vol. 128(C), pages 57-65.
  10. Francesco Liberati & Alessandro Di Giorgio, 2017. "Economic Model Predictive and Feedback Control of a Smart Grid Prosumer Node," Energies, MDPI, vol. 11(1), pages 1-23, December.
  11. Choi, Dong Gu & Murali, Karthik, 2022. "The impact of heterogeneity in consumer characteristics on the design of optimal time-of-use tariffs," Energy, Elsevier, vol. 254(PB).
  12. Guo, Zhilong & Xu, Wei & Yan, Yue & Sun, Mei, 2023. "How to realize the power demand side actively matching the supply side? ——A virtual real-time electricity prices optimization model based on credit mechanism," Applied Energy, Elsevier, vol. 343(C).
  13. Muhammad Babar & Jakub Grela & Andrzej Ożadowicz & Phuong H. Nguyen & Zbigniew Hanzelka & I. G. Kamphuis, 2018. "Energy Flexometer: Transactive Energy-Based Internet of Things Technology," Energies, MDPI, vol. 11(3), pages 1-20, March.
  14. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
  15. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  16. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Assessment of forecasting methods on performance of photovoltaic-battery systems," Applied Energy, Elsevier, vol. 221(C), pages 358-373.
  17. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
  18. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
  19. Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, vol. 10(11), pages 1-29, November.
  20. Thibaut Th'eate & Antonio Sutera & Damien Ernst, 2023. "Matching of Everyday Power Supply and Demand with Dynamic Pricing: Problem Formalisation and Conceptual Analysis," Papers 2301.11587, arXiv.org.
  21. Chen, Yongbao & Zhang, Lixin & Xu, Peng & Di Gangi, Alessandra, 2021. "Electricity demand response schemes in China: Pilot study and future outlook," Energy, Elsevier, vol. 224(C).
  22. Wang, Chuyao & Ji, Jie & Yang, Hongxing, 2024. "Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings," Energy, Elsevier, vol. 289(C).
  23. Simona-Vasilica Oprea & Adela Bâra & Răzvan Cristian Marales & Margareta-Stela Florescu, 2021. "Data Model for Residential and Commercial Buildings. Load Flexibility Assessment in Smart Cities," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
  24. Luis Alejandro Arias & Edwin Rivas & Francisco Santamaria & Victor Hernandez, 2018. "A Review and Analysis of Trends Related to Demand Response," Energies, MDPI, vol. 11(7), pages 1-24, June.
  25. Abdelmotteleb, Ibtihal & Gómez, Tomás & Chaves Ávila, José Pablo & Reneses, Javier, 2018. "Designing efficient distribution network charges in the context of active customers," Applied Energy, Elsevier, vol. 210(C), pages 815-826.
  26. Yamaguchi, Yohei & Chen, Chien-fei & Shimoda, Yoshiyuki & Yagita, Yoshie & Iwafune, Yumiko & Ishii, Hideo & Hayashi, Yasuhiro, 2020. "An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities," Energy Policy, Elsevier, vol. 142(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.