IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v161y2016icp627-646.html
   My bibliography  Save this item

Evaluating the potential of process sites for waste heat recovery

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
  2. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
  3. Michel Feidt & Monica Costea & Renaud Feidt & Quentin Danel & Christelle Périlhon, 2020. "New Criteria to Characterize the Waste Heat Recovery," Energies, MDPI, vol. 13(4), pages 1-15, February.
  4. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
  5. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
  6. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
  7. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2016. "Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery," Applied Energy, Elsevier, vol. 181(C), pages 155-170.
  8. Kim, Deok Han & Park, Byung Ho & Kwon, Kilsung & Li, Longnan & Kim, Daejoong, 2017. "Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery," Applied Energy, Elsevier, vol. 189(C), pages 201-210.
  9. Daniele Dadi & Vito Introna & Miriam Benedetti, 2022. "Decarbonization of Heat through Low-Temperature Waste Heat Recovery: Proposal of a Tool for the Preliminary Evaluation of Technologies in the Industrial Sector," Sustainability, MDPI, vol. 14(19), pages 1-28, October.
  10. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
  11. Li, Yong & Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Han, Wei, 2018. "Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater," Energy, Elsevier, vol. 149(C), pages 639-661.
  12. Tilia Dahou & Patrick Dutournié & Lionel Limousy & Simona Bennici & Nicolas Perea, 2019. "Recovery of Low-Grade Heat (Heat Waste) from a Cogeneration Unit for Woodchips Drying: Energy and Economic Analyses," Energies, MDPI, vol. 12(3), pages 1-17, February.
  13. Zhang, Qi & Gao, Jintong & Wang, Yujie & Wang, Lin & Yu, Zaihai & Song, Dayong, 2019. "Exergy-based analysis combined with LCA for waste heat recovery in coal-fired CHP plants," Energy, Elsevier, vol. 169(C), pages 247-262.
  14. Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
  15. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2023. "Exploring impacts of deployment sequences of industrial mitigation measures on their combined CO2 reduction potential," Energy, Elsevier, vol. 262(PB).
  16. Yun, Eunkoo & Kim, Dokyun & Lee, Minseog & Baek, Seungdong & Yoon, Sang Youl & Kim, Kyung Chun, 2016. "Parallel-expander Organic Rankine cycle using dual expanders with different capacities," Energy, Elsevier, vol. 113(C), pages 204-214.
  17. Oluleye, Gbemi & Smith, Robin, 2016. "A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites," Applied Energy, Elsevier, vol. 178(C), pages 434-453.
  18. Hrabec, Dušan & Šomplák, Radovan & Nevrlý, Vlastimír & Viktorin, Adam & Pluháček, Michal & Popela, Pavel, 2020. "Sustainable waste-to-energy facility location: Influence of demand on energy sales," Energy, Elsevier, vol. 207(C).
  19. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
  20. Wallerand, Anna S. & Kermani, Maziar & Kantor, Ivan & Maréchal, François, 2018. "Optimal heat pump integration in industrial processes," Applied Energy, Elsevier, vol. 219(C), pages 68-92.
  21. Rodríguez, R. & Bello, V.G. & Díaz-Aguado, M.B., 2017. "Application of eco-efficiency in a coal-burning power plant benefitting both the environment and citizens: Design of a ‘city water heating’ system," Applied Energy, Elsevier, vol. 189(C), pages 789-799.
  22. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2024. "Improving plant-level heat pump performance through process modifications," Applied Energy, Elsevier, vol. 358(C).
  23. Sanjay Mukherjee & Abhishek Asthana & Martin Howarth & Jahedul Islam Chowdhury, 2020. "Techno-Economic Assessment of Waste Heat Recovery Technologies for the Food Processing Industry," Energies, MDPI, vol. 13(23), pages 1-26, December.
  24. Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Lanza, M. & Milone, C., 2016. "Thermochemical performance of carbon nanotubes based hybrid materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 181(C), pages 232-243.
  25. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
  26. Kumar, Prashant & Kishore, Ravi Anant & Maurya, Deepam & Stewart, Colin J. & Mirzaeifar, Reza & Quandt, Eckhard & Priya, Shashank, 2019. "Shape memory alloy engine for high efficiency low-temperature gradient thermal to electrical conversion," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.