IDEAS home Printed from https://ideas.repec.org/r/ecm/quante/v4y2013i2p157-196.html
   My bibliography  Save this item

An instrumental variable model of multiple discrete choice

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
  2. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
  3. Rui Wang, 2023. "Testing and Identifying Substitution and Complementarity Patterns," Papers 2304.00678, arXiv.org.
  4. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
  5. Marc Henry & Romuald Méango & Maurice Queyranne, 2012. "Combinatorial Bootstrap Inference IN in Prtially Identified Incomplete Structural Models," CIRJE F-Series CIRJE-F-837, CIRJE, Faculty of Economics, University of Tokyo.
  6. Eleni Aristodemou, 2021. "A discrete choice model for partially ordered alternatives," CeMMAP working papers CWP35/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  7. Andrew Chesher & Adam Rosen, 2012. "Simultaneous equations for discrete outcomes: coherence, completeness, and identification," CeMMAP working papers CWP21/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  8. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
  9. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
  10. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  11. Andrew Chesher & Adam Rosen, 2020. "Econometric Modeling of Interdependent Discrete Choice with Applications to Market Structure," CeMMAP working papers CWP25/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  12. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
  13. Andrew Chesher & Adam M. Rosen, 2014. "An instrumental variable random‐coefficients model for binary outcomes," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 1-19, June.
  14. Gualdani, Cristina & Sinha, Shruti, 2019. "Partial identification in matching models for the marriage market," TSE Working Papers 19-993, Toulouse School of Economics (TSE), revised Aug 2022.
  15. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
  16. Gu, Jiaying & Russell, Thomas M., 2023. "Partial identification in nonseparable binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 528-562.
  17. Andrew Chesher & Adam M. Rosen, 2021. "Counterfactual Worlds," Annals of Economics and Statistics, GENES, issue 142, pages 311-335.
  18. Eleni Aristodemou & Adam M. Rosen, 2022. "A discrete choice model for partially ordered alternatives," Quantitative Economics, Econometric Society, vol. 13(3), pages 863-906, July.
  19. Marc Henry & Ismael Mourifié, 2012. "Sharp Bounds in the Binary Roy Model," CIRANO Working Papers 2012s-06, CIRANO.
  20. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
  21. Fusejima, Koki, 2024. "Identification of multi-valued treatment effects with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 238(1).
  22. Levon Barseghyan & Maura Coughlin & Francesca Molinari & Joshua C. Teitelbaum, 2021. "Heterogeneous Choice Sets and Preferences," Econometrica, Econometric Society, vol. 89(5), pages 2015-2048, September.
  23. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
  24. Vishal Kamat & Samuel Norris & Matthew Pecenco, 2023. "Identification in Multiple Treatment Models under Discrete Variation," Papers 2307.06174, arXiv.org.
  25. Chesher, Andrew, 2013. "Semiparametric Structural Models Of Binary Response: Shape Restrictions And Partial Identification," Econometric Theory, Cambridge University Press, vol. 29(2), pages 231-266, April.
  26. V. Chernozhukov & C. Hansen, 2013. "Quantile Models with Endogeneity," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 57-81, May.
  27. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
  28. Lixiong Li & Marc Henry, 2022. "Finite Sample Inference in Incomplete Models," Papers 2204.00473, arXiv.org, revised Apr 2024.
  29. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
  30. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  31. Jiaying Gu & Thomas M. Russell, 2021. "Partial Identification in Nonseparable Binary Response Models with Endogenous Regressors," Papers 2101.01254, arXiv.org, revised Jul 2022.
  32. Romuald Méango, 2014. "International Student Migration: A Partial Identification Analysis," CESifo Working Paper Series 4677, CESifo.
  33. Andrew Chesher & Adam Rosen, 2020. "Structural modeling of simultaneous discrete choice," CeMMAP working papers CWP9/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.