IDEAS home Printed from https://ideas.repec.org/r/cte/wsrepe/ws053605.html
   My bibliography  Save this item

Bayesian estimation of the gaussian mixture garch model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
  2. Bentarzi, M. & Hamdi, F., 2008. "Mixture periodic autoregressive conditional heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 1-16, September.
  3. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009. "Asymmetric multivariate normal mixture GARCH," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
  4. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
  5. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
  6. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
  7. Dellaportas, Petros & Tsionas, Mike G., 2019. "Importance sampling from posterior distributions using copula-like approximations," Journal of Econometrics, Elsevier, vol. 210(1), pages 45-57.
  8. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
  9. Rubing Liang & Binbin Qin & Qiang Xia, 2024. "Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 193-220, January.
  10. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
  11. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
  12. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
  13. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
  14. Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
  15. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
  16. Ha, Jeongcheol & Lee, Taewook, 2011. "NM-QELE for ARMA-GARCH models with non-Gaussian innovations," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 694-703, June.
  17. Abdullah Alqahtani & Julien Chevallier, 2020. "Dynamic Spillovers between Gulf Cooperation Council’s Stocks, VIX, Oil and Gold Volatility Indices," JRFM, MDPI, vol. 13(4), pages 1-17, April.
  18. Qiang Xia & Heung Wong & Jinshan Liu & Rubing Liang, 2017. "Bayesian Analysis of Power-Transformed and Threshold GARCH Models: A Griddy-Gibbs Sampler Approach," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 353-372, October.
  19. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci De Magistris, 2014. "Chasing Volatility. A Persistent Multiplicative Error Model With Jumps," "Marco Fanno" Working Papers 0186, Dipartimento di Scienze Economiche "Marco Fanno".
  20. Chen, Yan & Yu, Wenqiang, 2020. "Setting the margins of Hang Seng Index Futures on different positions using an APARCH-GPD Model based on extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
  21. Pilar Abad Romero & Sonia Benito Muela & Miguel Angel Sánchez Granero & Carmen López, 2013. "Evaluating the performance of the skewed distributions to forecast Value at Risk in the Global Financial Crisis," Documentos de Trabajo del ICAE 2013-40, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  22. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
  23. repec:cte:wsrepe:ws141711 is not listed on IDEAS
  24. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
  25. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
  26. Martin Magris & Alexandros Iosifidis, 2023. "Variational Inference for GARCH-family Models," Papers 2310.03435, arXiv.org.
  27. Yuzhi Cai, 2021. "Estimating expected shortfall using a quantile function model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4332-4360, July.
  28. Ausin, M. Concepcion & Lopes, Hedibert F., 2010. "Time-varying joint distribution through copulas," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2383-2399, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.