IDEAS home Printed from https://ideas.repec.org/r/bla/mathfi/v12y2002i3p219-237.html
   My bibliography  Save this item

American options on assets with dividends near expiry

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Denis Veliu & Roberto De Marchis & Mario Marino & Antonio Luciano Martire, 2022. "An Alternative Numerical Scheme to Approximate the Early Exercise Boundary of American Options," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
  2. Ziwei Ke & Joanna Goard, 2019. "Penalty American Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-32, March.
  3. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  4. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
  5. Anna Battauz & Marzia De Donno & Janusz Gajda & Alessandro Sbuelz, 2022. "Optimal exercise of American put options near maturity: A new economic perspective," Review of Derivatives Research, Springer, vol. 25(1), pages 23-46, April.
  6. Battauz, Anna & De Donno, Marzia & Sbuelz, Alessandro, 2022. "On the exercise of American quanto options," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
  7. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
  8. Jérôme Detemple, 2014. "Optimal Exercise for Derivative Securities," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 459-487, December.
  9. Maria do Rosario Grossinho & Yaser Kord Faghan & Daniel Sevcovic, 2016. "Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Papers 1611.00885, arXiv.org, revised Nov 2017.
  10. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
  11. Peter W. Duck & Geoffrey W. Evatt & Paul V. Johnson, 2014. "Perpetual Options on Multiple Underlyings," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(2), pages 174-200, April.
  12. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
  13. Tiziano De Angelis & Damien Lamberton, 2024. "A probabilistic approach to continuous differentiability of optimal stopping boundaries," Papers 2405.16636, arXiv.org.
  14. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
  15. Chung, San-Lin & Hung, Mao-Wei & Wang, Jr-Yan, 2010. "Tight bounds on American option prices," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 77-89, January.
  16. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.
  17. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/19, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  18. Vynnycky, M., 2023. "On boundary immobilization for one-dimensional Stefan-type problems with a moving boundary having initially parabolic-logarithmic behaviour," Applied Mathematics and Computation, Elsevier, vol. 444(C).
  19. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2015. "Real Options and American Derivatives: The Double Continuation Region," Management Science, INFORMS, vol. 61(5), pages 1094-1107, May.
  20. Anna Clevenhaus & Matthias Ehrhardt & Michael Günther & Daniel Ševčovič, 2020. "Pricing American Options with a Non-Constant Penalty Parameter," JRFM, MDPI, vol. 13(6), pages 1-7, June.
  21. Zhu, Song-Ping & Chen, Wen-Ting, 2013. "An inverse finite element method for pricing American options," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 231-250.
  22. Wenting Chen & Song-Ping Zhu, 2022. "On the Asymptotic Behavior of the Optimal Exercise Price Near Expiry of an American Put Option under Stochastic Volatility," JRFM, MDPI, vol. 15(5), pages 1-19, April.
  23. Fannu Hu & Charles Knessl, 2010. "Asymptotics of Barrier Option Pricing Under the CEV Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 261-300.
  24. Maria do Rosario Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Papers 1707.00358, arXiv.org, revised Jun 2018.
  25. Xin-Jiang He & Sha Lin, 2022. "An Analytical Approximation Formula for Barrier Option Prices Under the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1413-1425, December.
  26. Maria do Rosário Grossinho & Yaser Kord Faghan & Daniel Ševčovič, 2017. "Pricing Perpetual Put Options by the Black–Scholes Equation with a Nonlinear Volatility Function," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(4), pages 291-308, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.