IDEAS home Printed from https://ideas.repec.org/r/bla/jtsera/v20y1999i3p331-341.html
   My bibliography  Save this item

Plug‐in Selection of the Number of Frequencies in Regression Estimates of the Memory Parameter of a Long‐memory Time Series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The memory of stock return volatility: Asset pricing implications," Journal of Financial Markets, Elsevier, vol. 47(C).
  2. D. (Derek) Bond & Michael J. Harrison & Edward J. (Edward Joseph) O'Brien, 2009. "Exploring long memory and nonlinearity in Irish real exchange Rates using tests based on semiparametric estimation," Working Papers 200901, School of Economics, University College Dublin.
  3. Dräger, Lena & Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The Long Memory of Equity Volatility and the Macroeconomy: International Evidence," Hannover Economic Papers (HEP) dp-667, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  4. Berna Kirkulak Uludag & Zorikto Lkhamazhapov, 2014. "Long memory and structural breaks in the returns and volatility of gold: evidence from Turkey," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3777-3787, November.
  5. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
  6. Peter M Robinson, 2004. "ROBUST COVARIANCE MATRIX ESTIMATION: "HAC" Estimates with Long Memory/Antipersistence Correction," STICERD - Econometrics Paper Series 471, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  7. Omane-Adjepong, Maurice & Alagidede, Paul & Akosah, Nana Kwame, 2019. "Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 105-120.
  8. Robinson, Peter M., 2004. "Robust covariance matrix estimation : HAC estimates with long memory/antipersistence correction," LSE Research Online Documents on Economics 2157, London School of Economics and Political Science, LSE Library.
  9. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2017. "The Long Memory of Equity Volatility: International Evidence," Hannover Economic Papers (HEP) dp-614, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  10. Ye, Xunyu & Gao, Ping & Li, Handong, 2015. "Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram," Economic Modelling, Elsevier, vol. 46(C), pages 167-179.
  11. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
  12. Bond, Derek & Gallagher, Emer & Ramsey, Elaine, 2012. "A preliminary investigation of northern Ireland's housing market dynamics," MPRA Paper 39806, University Library of Munich, Germany.
  13. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
  14. Saeed Heravi & Kerry Patterson, 2013. "Log-Periodogram Estimation of the Long-Memory Parameter: An Evaluation of Competing Estimators," Economics Discussion Papers em-dp2013-02, Department of Economics, University of Reading.
  15. repec:rdg:wpaper:em-dp2013-02 is not listed on IDEAS
  16. Lopes, Sílvia Regina Costa & Olbermann, Bárbara Patrícia & Reisen, Valderio Anselmo, 2002. "Non-stationary Gaussian ARFIMA processes: Estimation and application," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 22(1), May.
  17. Arteche, Josu & Orbe, Jesus, 2017. "A strategy for optimal bandwidth selection in Local Whittle estimation," Econometrics and Statistics, Elsevier, vol. 4(C), pages 3-17.
  18. Dooruj Rambaccussing & Murat Mazibas, 2020. "True versus Spurious Long Memory in Cryptocurrencies," JRFM, MDPI, vol. 13(9), pages 1-11, August.
  19. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
  20. Arteche González, Jesús María & Orbe Lizundia, Jesús María, 2008. "Selection of the number of frequencies using bootstrap techniques in log-periodogram regression," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
  21. Masaki Narukawa & Yasumasa Matsuda, 2008. "Broadband semiparametric estimation of the long-memory parameter by the likelihood-based FEXP approach," TERG Discussion Papers 239, Graduate School of Economics and Management, Tohoku University.
  22. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
  23. Jiang, George J. & Tian, Yisong S., 2010. "Forecasting Volatility Using Long Memory and Comovements: An Application to Option Valuation under SFAS 123R," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 503-533, April.
  24. Davidson, James & Sibbertsen, Philipp, 2009. "Tests of bias in log-periodogram regression," Economics Letters, Elsevier, vol. 102(2), pages 83-86, February.
  25. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
  26. Franco, Glaura C. & Reisen, Valderio A., 2007. "Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 546-562.
  27. Philipp Sibbertsen, 2004. "Long memory in volatilities of German stock returns," Empirical Economics, Springer, vol. 29(3), pages 477-488, September.
  28. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
  29. Rohit Deo & Mengchen Hsieh & Clifford Hurvich, 2005. "Tracing the Source of Long Memory in Volatility," Econometrics 0501005, University Library of Munich, Germany.
  30. Reisen Valderio A & Cribari-Neto Francisco & Jensen Mark J, 2003. "Long Memory Inflationary Dynamics: The Case of Brazil," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(3), pages 1-18, October.
  31. Sibbertsen, Philipp & Venetis, Ioannis, 2003. "Distinguishing between long-range dependence and deterministic trends," Technical Reports 2003,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  32. Yixun Xing & Wayne A. Woodward, 2021. "R-Squared-Bootstrapping for Gegenbauer-Type Long Memory," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 773-790, February.
  33. Assaf, Ata, 2015. "Long memory and level shifts in REITs returns and volatility," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 172-182.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.