IDEAS home Printed from https://ideas.repec.org/r/bla/jecsur/v28y2014i1p82-108.html
   My bibliography  Save this item

Extreme Value Theory In Finance: A Survey

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Renan O. Regis & Raydonal Ospina & Wilton Bernardino & Francisco Cribari-Neto, 2023. "Asset pricing in the Brazilian financial market: five-factor GAMLSS modeling," Empirical Economics, Springer, vol. 64(5), pages 2373-2409, May.
  2. Khamis Hamed Al‐Yahyaee & Syed Jawad Hussain Shahzad & Walid Mensi & Seong‐Min Yoon, 2021. "Is there a systemic risk between Sharia, Sukuk, and GCC stock markets? A ΔCoVaR risk metric‐based copula approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2904-2926, April.
  3. Lin Fan & Peter W. Glynn & Markus Pelger, 2018. "Change-Point Testing for Risk Measures in Time Series," Papers 1809.02303, arXiv.org, revised Jul 2023.
  4. Fang, Sheng & Egan, Paul, 2018. "Measuring contagion effects between crude oil and Chinese stock market sectors," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 31-38.
  5. Alexakis, Christos & Kenourgios, Dimitris & Pappas, Vasileios & Petropoulou, Athina, 2021. "From dotcom to Covid-19: A convergence analysis of Islamic investments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
  6. Saad Alsunbul & Basim Alzugaiby & Sajid Chaudhry & Rhada Boujlil, 2024. "The fatter the tail, the shorter the sail," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 331-380, March.
  7. Phong Nguyen & Wei-han Liu, 2017. "Time-Varying Linkage of Possible Safe Haven Assets: A Cross-Market and Cross-asset Analysis," International Review of Finance, International Review of Finance Ltd., vol. 17(1), pages 43-76, March.
  8. Wang, Lu & Ma, Feng & Niu, Tianjiao & He, Chengting, 2020. "Crude oil and BRICS stock markets under extreme shocks: New evidence," Economic Modelling, Elsevier, vol. 86(C), pages 54-68.
  9. Knowledge Chinhamu & Chun-Kai Huang & Chun-Sung Huang & Jahvaid Hammujuddy, 2015. "Empirical Analyses of Extreme Value Models for the South African Mining Index," South African Journal of Economics, Economic Society of South Africa, vol. 83(1), pages 41-55, March.
  10. Alexander Jiron & Wayne Passmore & Aurite Werman, 2021. "An empirical foundation for calibrating the G-SIB surcharge," BIS Working Papers 935, Bank for International Settlements.
  11. Paraschiv, Florentina & Mudry, Pierre-Antoine & Andries, Alin Marius, 2015. "Stress-testing for portfolios of commodity futures," Economic Modelling, Elsevier, vol. 50(C), pages 9-18.
  12. Mouridi M. HAMIDOU & Joseph K. Mung'atu & George O. Orwa, 2018. "Return Levels Approach and Periods of Currency Crises," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 10(3), pages 77-96, June.
  13. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
  14. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
  15. Puneet Prakash & Vikas Sangwan & Kewal Singh, 2021. "Transformational Approach to Analytical Value-at-Risk for near Normal Distributions," JRFM, MDPI, vol. 14(2), pages 1-19, January.
  16. Lv, Wendai, 2018. "Does the OVX matter for volatility forecasting? Evidence from the crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 916-922.
  17. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
  18. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
  19. Xi, Yue & Zeng, Qing & Lu, Xinjie & Huynh, Toan L.D., 2022. "Oil and renewable energy stock markets: Unique role of extreme shocks," Energy Economics, Elsevier, vol. 109(C).
  20. Zheng, Yixing & Ramsey, Austin F., 2022. "Extreme Correlation Between Daily Basis Returns of Local Corn Markets in North Carolina," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322373, Agricultural and Applied Economics Association.
  21. Chiara Lattanzi & Manuele Leonelli, 2019. "A changepoint approach for the identification of financial extreme regimes," Papers 1902.09205, arXiv.org.
  22. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
  23. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
  24. Kokoszka Piotr & Miao Hong & Stoev Stilian & Zheng Ben, 2019. "Risk Analysis of Cumulative Intraday Return Curves," Journal of Time Series Econometrics, De Gruyter, vol. 11(2), pages 1-31, July.
  25. Carlin C. F. Chu & Simon S. W. Li, 2024. "A multiobjective optimization approach for threshold determination in extreme value analysis for financial time series," Computational Management Science, Springer, vol. 21(1), pages 1-14, June.
  26. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
  27. Enzo D'Innocenzo & Andre Lucas & Bernd Schwaab & Xin Zhang, 2024. "Joint extreme Value-at-Risk and Expected Shortfall dynamics with a single integrated tail shape parameter," Tinbergen Institute Discussion Papers 24-069/III, Tinbergen Institute.
  28. Jiawen Xu & Yixuan Li & Kai Liu & Tao Chen, 2023. "Portfolio selection: from under-diversification to concentration," Empirical Economics, Springer, vol. 64(4), pages 1539-1557, April.
  29. Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
  30. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
  31. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2024. "Forecasting the effect of extreme sea-level rise on financial market risk," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1-27.
  32. Neumann, Tobias, 2018. "Mortgages: estimating default correlation and forecasting default risk," Bank of England working papers 708, Bank of England.
  33. M. Zulkifli Salim & Kevin Daly, 2021. "Modelling Systemically Important Banks vis-à-vis the Basel Prudential Guidelines," JRFM, MDPI, vol. 14(7), pages 1-20, June.
  34. Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.