IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v68y2018icp31-38.html
   My bibliography  Save this article

Measuring contagion effects between crude oil and Chinese stock market sectors

Author

Listed:
  • Fang, Sheng
  • Egan, Paul

Abstract

The role of cross-market linkages in the occurrence of tail events in stock and energy markets has not yet been fully understood in the contagion literature. This paper investigates the contagion from oil prices to Chinese stock sectors by considering differences between extreme positive returns and extreme negative returns. We compute time-varying cut-offs by employing a generalized Pareto distribution (GPD) function to estimate excess returns. We then use a multinomial logit (MNL) model to examine the probability of Chinese stock sector co-exceedances associated with oil price exceedances. Our results indicate that, compared to common domestic factors, the contagion between oil price and stock sectors is relatively weak, but never negligible. We argue that faced with volatile oil prices during turbulent periods, the existence of any contagion weakens the benefits of portfolio diversification related to oil and Chinese stock sector investment. Based on our findings, investors holding a portfolio of oil and Chinese sector stocks should pay special attention to the extreme changes in crude oil prices and adopt hedging measures to protect their portfolio from extreme shocks to oil markets.

Suggested Citation

  • Fang, Sheng & Egan, Paul, 2018. "Measuring contagion effects between crude oil and Chinese stock market sectors," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 31-38.
  • Handle: RePEc:eee:quaeco:v:68:y:2018:i:c:p:31-38
    DOI: 10.1016/j.qref.2017.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976917301837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2017.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.
    2. Aloui, Riadh & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2013. "A time-varying copula approach to oil and stock market dependence: The case of transition economies," Energy Economics, Elsevier, vol. 39(C), pages 208-221.
    3. Beltratti, Andrea & Bortolotti, Bernardo & Caccavaio, Marianna, 2016. "Stock market efficiency in China: Evidence from the split-share reform," The Quarterly Review of Economics and Finance, Elsevier, vol. 60(C), pages 125-137.
    4. Sukcharoen, Kunlapath & Zohrabyan, Tatevik & Leatham, David & Wu, Ximing, 2014. "Interdependence of oil prices and stock market indices: A copula approach," Energy Economics, Elsevier, vol. 44(C), pages 331-339.
    5. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    6. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    7. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    8. Karmakar, Madhusudan & Shukla, Girja K., 2015. "Managing extreme risk in some major stock markets: An extreme value approach," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 1-25.
    9. Wen, Xiaoqian & Wei, Yu & Huang, Dengshi, 2012. "Measuring contagion between energy market and stock market during financial crisis: A copula approach," Energy Economics, Elsevier, vol. 34(5), pages 1435-1446.
    10. Baur, Dirk & Schulze, Niels, 2005. "Coexceedances in financial markets--a quantile regression analysis of contagion," Emerging Markets Review, Elsevier, vol. 6(1), pages 21-43, April.
    11. Huiming Zhu & Yawei Guo & Wanhai You, 2015. "An empirical research of crude oil price changes and stock market in China: evidence from the structural breaks and quantile regression," Applied Economics, Taylor & Francis Journals, vol. 47(56), pages 6055-6074, December.
    12. Mensi, Walid & Hammoudeh, Shawkat & Reboredo, Juan Carlos & Nguyen, Duc Khuong, 2014. "Do global factors impact BRICS stock markets? A quantile regression approach," Emerging Markets Review, Elsevier, vol. 19(C), pages 1-17.
    13. Ding, Haoyuan & Kim, Hyung-Gun & Park, Sung Y., 2016. "Crude oil and stock markets: Causal relationships in tails?," Energy Economics, Elsevier, vol. 59(C), pages 58-69.
    14. Dayong Zhang & Hong Cao, 2013. "Sectoral Responses of the Chinese Stock Market to International Oil Shocks," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(6), pages 37-51, November.
    15. Guangxi Cao, 2012. "Time-Varying Effects of Changes in the Interest Rate and the RMB Exchange Rate on the Stock Market of China: Evidence from the Long-Memory TVP-VAR Model," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(0), pages 230-248, July.
    16. Marco Rocco, 2014. "Extreme Value Theory In Finance: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(1), pages 82-108, February.
    17. Cong, Rong-Gang & Wei, Yi-Ming & Jiao, Jian-Lin & Fan, Ying, 2008. "Relationships between oil price shocks and stock market: An empirical analysis from China," Energy Policy, Elsevier, vol. 36(9), pages 3544-3553, September.
    18. Chen, Qian & Lv, Xin, 2015. "The extreme-value dependence between the crude oil price and Chinese stock markets," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 121-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Time-varying energy and stock market integration in Asia," Energy Economics, Elsevier, vol. 80(C), pages 777-792.
    2. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Hamdi, Besma & Aloui, Mouna & Alqahtani, Faisal & Tiwari, Aviral, 2019. "Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and Granger-causality analysis," Energy Economics, Elsevier, vol. 80(C), pages 536-552.
    4. Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2021. "How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 70(C).
    5. Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
    6. Liu, Xiang-dong & Pan, Fei & Cai, Wen-li & Peng, Rui, 2020. "Correlation and risk measurement modeling: A Markov-switching mixed Clayton copula approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Syed Jawad Hussain Shahzad & Elie Bouri & Mobeen Ur Rehman & Muhammad Abubakr Naeem & Tareq Saeed, 2022. "Oil price risk exposure of BRIC stock markets and hedging effectiveness," Annals of Operations Research, Springer, vol. 313(1), pages 145-170, June.
    8. Syed Mujahid Hussain & Amjad Naveed & Sheraz Ahmed & Nisar Ahmad, 2022. "Disaggregating the impact of oil prices on European industrial equity indices: a spatial econometric analysis," Empirical Economics, Springer, vol. 62(6), pages 2673-2692, June.
    9. Mensi, Walid & Hanif, Waqas & Vo, Xuan Vinh & Choi, Ki-Hong & Yoon, Seong-Min, 2023. "Upside/Downside spillovers between oil and Chinese stock sectors: From the global financial crisis to global pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    10. Kuang, Wei, 2023. "The equity-oil hedge: A comparison between volatility and alternative risk frameworks," Energy, Elsevier, vol. 271(C).
    11. Aviral Kumar Tiwari & Samia Nasreen & Subhan Ullah & Muhammad Shahbaz, 2021. "Analysing spillover between returns and volatility series of oil across major stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2458-2490, April.
    12. Jingran Zhu & Qinghua Song & Dalia Streimikiene, 2020. "Multi-Time Scale Spillover Effect of International Oil Price Fluctuation on China’s Stock Markets," Energies, MDPI, vol. 13(18), pages 1-29, September.
    13. Zhao, Zhao & Wen, Huwei & Li, Ke, 2021. "Identifying bubbles and the contagion effect between oil and stock markets: New evidence from China," Economic Modelling, Elsevier, vol. 94(C), pages 780-788.
    14. Zhao-Yong Sun & Wei-Chiao Huang, 2023. "The effects of unexpected crude oil price shocks on Chinese stock markets," Economic Change and Restructuring, Springer, vol. 56(3), pages 1683-1697, June.
    15. Sheng Fang & Paul Egan, 2021. "Tail dependence between oil prices and China's A‐shares: Evidence from firm‐level data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1469-1487, January.
    16. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    17. Stoupos, Nikolaos & Kiohos, Apostolos, 2021. "Energy commodities and advanced stock markets: A post-crisis approach," Resources Policy, Elsevier, vol. 70(C).
    18. Ma, Yan-Ran & Zhang, Dayong & Ji, Qiang & Pan, Jiaofeng, 2019. "Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter?," Energy Economics, Elsevier, vol. 81(C), pages 536-544.
    19. Somayeh Kokabisaghi & Mohammadesmaeil Ezazi & Reza Tehrani & Nourmohammad Yaghoubi, 2019. "Sanction or Financial Crisis? An Artificial Neural Network-Based Approach to model the impact of oil price volatility on Stock and industry indices," Papers 1912.04015, arXiv.org, revised Sep 2020.
    20. Chen, Bin-xia & Sun, Yan-lin, 2023. "Extreme risk contagion between international crude oil and China's energy-intensive sectors: New evidence from quantile Granger causality and spillover methods," Energy, Elsevier, vol. 285(C).
    21. Mishra, Aswini Kumar & Ghate, Kshitish, 2022. "Dynamic connectedness in non-ferrous commodity markets: Evidence from India using TVP-VAR and DCC-GARCH approaches," Resources Policy, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Huiming & Huang, Hui & Peng, Cheng & Yang, Yan, 2016. "Extreme dependence between crude oil and stock markets in Asia-Pacific regions: Evidence from quantile regression," Economics Discussion Papers 2016-46, Kiel Institute for the World Economy (IfW Kiel).
    2. Zhu, Huiming & Guo, Yawei & You, Wanhai & Xu, Yaqin, 2016. "The heterogeneity dependence between crude oil price changes and industry stock market returns in China: Evidence from a quantile regression approach," Energy Economics, Elsevier, vol. 55(C), pages 30-41.
    3. Zhao, Zhao & Wen, Huwei & Li, Ke, 2021. "Identifying bubbles and the contagion effect between oil and stock markets: New evidence from China," Economic Modelling, Elsevier, vol. 94(C), pages 780-788.
    4. Sheng Fang & Paul Egan, 2021. "Tail dependence between oil prices and China's A‐shares: Evidence from firm‐level data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1469-1487, January.
    5. Chen, Chun-Da & Cheng, Chiao-Ming & Demirer, Rıza, 2017. "Oil and stock market momentum," Energy Economics, Elsevier, vol. 68(C), pages 151-159.
    6. Ferreira, Paulo & Pereira, Éder & Silva, Marcus, 2020. "The relationship between oil prices and the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Huiming Zhu & Xianfang Su & Yawei Guo & Yinghua Ren, 2016. "The Asymmetric Effects of Oil Price Shocks on the Chinese Stock Market: Evidence from a Quantile Impulse Response Perspective," Sustainability, MDPI, vol. 8(8), pages 1-19, August.
    8. Zhang, Guofu & Liu, Wei, 2018. "Analysis of the international propagation of contagion between oil and stock markets," Energy, Elsevier, vol. 165(PA), pages 469-486.
    9. Xiao, Jihong & Hu, Chunyan & Ouyang, Guangda & Wen, Fenghua, 2019. "Impacts of oil implied volatility shocks on stock implied volatility in China: Empirical evidence from a quantile regression approach," Energy Economics, Elsevier, vol. 80(C), pages 297-309.
    10. Yu, Lean & Zha, Rui & Stafylas, Dimitrios & He, Kaijian & Liu, Jia, 2020. "Dependences and volatility spillovers between the oil and stock markets: New evidence from the copula and VAR-BEKK-GARCH models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    11. You, Wanhai & Guo, Yawei & Zhu, Huiming & Tang, Yong, 2017. "Oil price shocks, economic policy uncertainty and industry stock returns in China: Asymmetric effects with quantile regression," Energy Economics, Elsevier, vol. 68(C), pages 1-18.
    12. Peng, Cheng & Zhu, Huiming & Guo, Yawei & Chen, Xiuyun, 2018. "Risk spillover of international crude oil to China's firms: Evidence from granger causality across quantile," Energy Economics, Elsevier, vol. 72(C), pages 188-199.
    13. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    14. Ferreira, Paulo & Pereira, Éder Johson de Area Leão & Silva, Marcus Fernandes da & Pereira, Hernane Borges, 2019. "Detrended correlation coefficients between oil and stock markets: The effect of the 2008 crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 86-96.
    15. Zhang, Dayong, 2017. "Oil shocks and stock markets revisited: Measuring connectedness from a global perspective," Energy Economics, Elsevier, vol. 62(C), pages 323-333.
    16. Jin Boon Wong & Qin Zhang, 2020. "Impact of international energy prices on China's industries," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(5), pages 722-748, May.
    17. Liu, Bing-Yue & Fan, Ying & Ji, Qiang & Hussain, Nazim, 2022. "High-dimensional CoVaR network connectedness for measuring conditional financial contagion and risk spillovers from oil markets to the G20 stock system," Energy Economics, Elsevier, vol. 105(C).
    18. Du, Limin & He, Yanan, 2015. "Extreme risk spillovers between crude oil and stock markets," Energy Economics, Elsevier, vol. 51(C), pages 455-465.
    19. Wanat, Stanisław & Papież, Monika & Śmiech, Sławomir, 2014. "Causality in distribution between European stock markets and commodity prices: Using independence test based on the empirical copula," MPRA Paper 57706, University Library of Munich, Germany.
    20. Yanan He & Jing Zhao, 2013. "Extreme Dependence between Crude Oil and the Stock Markets in China: A Sector," WISE Working Papers 2013-12-05, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.

    More about this item

    Keywords

    C32; G12; G15; Contagion; Oil market; Chinese stock sectors; Extreme returns; Co-exceedances;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:68:y:2018:i:c:p:31-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.