IDEAS home Printed from https://ideas.repec.org/r/bla/inecol/v14y2010i1p31-49.html
   My bibliography  Save this item

More or Better? A Model for Changes in Household Greenhouse Gas Emissions due to Higher Income

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jan C. T. Bieser & Vlad C. Coroamă, 2021. "Direkte und indirekte Umwelteffekte der Informations- und Kommunikationstechnologie [Direct and indirect environmental effects of information and communication technology]," Sustainability Nexus Forum, Springer, vol. 29(1), pages 1-11, March.
  2. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
  3. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
  4. De Lauretis, Simona & Ghersi, Frédéric & Cayla, Jean-Michel, 2017. "Energy consumption and activity patterns: An analysis extended to total time and energy use for French households," Applied Energy, Elsevier, vol. 206(C), pages 634-648.
  5. Jakob Enlund & David Andersson & Fredrik Carlsson, 2023. "Individual Carbon Footprint Reduction: Evidence from Pro-environmental Users of a Carbon Calculator," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 433-467, November.
  6. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
  7. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation," Ecological Economics, Elsevier, vol. 86(C), pages 188-198.
  8. Corey Allan & Suzi Kerr, 2016. "Who’s Going Green? Decomposing the Change in Household Consumption Emissions 2006 – 2012," Working Papers 16_20, Motu Economic and Public Policy Research.
  9. Reyes, René & Schueftan, Alejandra & Ruiz, Cecilia & González, Alejandro D., 2019. "Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses?," Energy Policy, Elsevier, vol. 124(C), pages 301-311.
  10. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
  11. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
  12. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
  13. Corey Allan & Suzi Kerr & Campbell Will, 2015. "Are we turning a brighter shade of green? The relationship between household characteristics and greenhouse gas emissions from consumption in New Zealand," Working Papers 15_06, Motu Economic and Public Policy Research.
  14. Jiaping Xie & Jing Li & Ling Liang & Xu Fang & Guang Yang & Lihong Wei, 2020. "Contracting Emissions Reduction Supply Chain Based on Market Low-Carbon Preference and Carbon Intensity Constraint," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-34, March.
  15. Diana Ivanova & Milena Büchs, 2020. "Household Sharing for Carbon and Energy Reductions: The Case of EU Countries," Energies, MDPI, vol. 13(8), pages 1-28, April.
  16. Schuster, Antonia & Lindner, Michael & Otto, Ilona M., 2023. "Whose house is on fire? Identifying socio-demographic and housing characteristics driving differences in the UK household CO2 emissions," Ecological Economics, Elsevier, vol. 207(C).
  17. Starr, Jared & Nicolson, Craig & Ash, Michael & Markowitz, Ezra M. & Moran, Daniel, 2023. "Assessing U.S. consumers' carbon footprints reveals outsized impact of the top 1%," Ecological Economics, Elsevier, vol. 205(C).
  18. André, Mathias & Bourgeois, Alexandre & Combet, Emmanuel & Lequien, Matthieu & Pottier, Antonin, 2024. "Challenges in measuring the distribution of carbon footprints: The role of product and price heterogeneity," Ecological Economics, Elsevier, vol. 220(C).
  19. Tukker, Arnold & Goldbohm, R. Alexandra & de Koning, Arjan & Verheijden, Marieke & Kleijn, René & Wolf, Oliver & Pérez-Domínguez, Ignacio & Rueda-Cantuche, Jose M., 2011. "Environmental impacts of changes to healthier diets in Europe," Ecological Economics, Elsevier, vol. 70(10), pages 1776-1788, August.
  20. Liobikienė, Genovaitė & Butkus, Mindaugas & Bernatonienė, Jurga, 2016. "Drivers of greenhouse gas emissions in the Baltic states: decomposition analysis related to the implementation of Europe 2020 strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 309-317.
  21. Lena Kilian & Anne Owen & Andy Newing & Diana Ivanova, 2022. "Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
  22. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
  23. Druckman, Angela & Jackson, Tim, 2010. "The bare necessities: How much household carbon do we really need?," Ecological Economics, Elsevier, vol. 69(9), pages 1794-1804, July.
  24. Berthe, Alexandre & Elie, Luc, 2015. "Mechanisms explaining the impact of economic inequality on environmental deterioration," Ecological Economics, Elsevier, vol. 116(C), pages 191-200.
  25. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
  26. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
  27. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
  28. Girod, Bastien & van Vuuren, Detlef P. & Deetman, Sebastiaan, 2012. "Global travel within the 2°C climate target," Energy Policy, Elsevier, vol. 45(C), pages 152-166.
  29. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
  30. Cecilia Matasci & Marcel Gauch & Heinz Böni & Patrick Wäger, 2021. "The Influence of Consumer Behavior on Climate Change: The Case of Switzerland," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
  31. Mair, Simon & Druckman, Angela & Jackson, Tim, 2019. "Higher Wages for Sustainable Development? Employment and Carbon Effects of Paying a Living Wage in Global Apparel Supply Chains," Ecological Economics, Elsevier, vol. 159(C), pages 11-23.
  32. Anna Trendl & Anne Owen & Lara Vomfell & Lena Kilian & John Gathergood & Neil Stewart & David Leake, 2023. "Estimating carbon footprints from large scale financial transaction data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 56-70, February.
  33. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
  34. Milena Büchs & Noel Cass & Caroline Mullen & Karen Lucas & Diana Ivanova, 2023. "Emissions savings from equitable energy demand reduction," Nature Energy, Nature, vol. 8(7), pages 758-769, July.
  35. Nässén, Jonas, 2014. "Determinants of greenhouse gas emissions from Swedish private consumption: Time-series and cross-sectional analyses," Energy, Elsevier, vol. 66(C), pages 98-106.
  36. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
  37. Girod, Bastien & van Vuuren, Detlef P. & de Vries, Bert, 2013. "Influence of travel behavior on global CO2 emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 183-197.
  38. Isaksen, Elisabeth T. & Narbel, Patrick A., 2017. "A carbon footprint proportional to expenditure - A case for Norway?," Ecological Economics, Elsevier, vol. 131(C), pages 152-165.
  39. Buechs, Milena & Schnepf, Sylke V., 2013. "UK Households' Carbon Footprint: A Comparison of the Association between Household Characteristics and Emissions from Home Energy, Transport and Other Goods and Services," IZA Discussion Papers 7204, Institute of Labor Economics (IZA).
  40. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
  41. Murray, Cameron K., 2013. "What if consumers decided to all ‘go green’? Environmental rebound effects from consumption decisions," Energy Policy, Elsevier, vol. 54(C), pages 240-256.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.