IDEAS home Printed from https://ideas.repec.org/r/azt/cemmap/09-15.html
   My bibliography  Save this item

Estimation of stochastic volatility models by nonparametric filtering

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
  2. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
  3. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
  4. Kanaya, Shin, 2017. "Uniform Convergence Rates Of Kernel-Based Nonparametric Estimators For Continuous Time Diffusion Processes: A Damping Function Approach," Econometric Theory, Cambridge University Press, vol. 33(4), pages 874-914, August.
  5. Creel, Michael & Kristensen, Dennis, 2015. "ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
  6. Matthieu Garcin & Clément Goulet, 2017. "Non-parametric news impact curve: a variational approach," Post-Print halshs-01244292, HAL.
  7. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.
  8. Anisha Ghosh & Oliver Linton, 2019. "Estimation with Mixed Data Frequencies: A Bias-Correction Approach," CeMMAP working papers CWP65/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  9. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
  10. Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Cambridge Working Papers in Economics 2218, Faculty of Economics, University of Cambridge.
  11. Ghosh, Anisha & Linton, Oliver, 2023. "Estimation with mixed data frequencies: A bias-correction approach," Journal of Empirical Finance, Elsevier, vol. 74(C).
  12. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2024. "Maximum likelihood estimation of latent Markov models using closed-form approximations," Journal of Econometrics, Elsevier, vol. 240(2).
  13. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
  14. Mustafayeva, Konul & Wang, Weining, 2020. "Non-Parametric Estimation of Spot Covariance Matrix with High-Frequency Data," IRTG 1792 Discussion Papers 2020-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  15. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
  16. Matthieu Garcin & Clément Goulet, 2017. "Non-parametric news impact curve: a variational approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01244292, HAL.
  17. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
  18. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
  19. Liu, Qiang & Liu, Yiqi & Liu, Zhi & Wang, Li, 2018. "Estimation of spot volatility with superposed noisy data," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 62-79.
  20. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
  21. Arthur T. Rego & Thiago R. dos Santos, 2018. "Non-Gaussian Stochastic Volatility Model with Jumps via Gibbs Sampler," Papers 1809.01501, arXiv.org, revised Oct 2018.
  22. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
  23. Curato, Imma Valentina & Mancino, Maria Elvira & Recchioni, Maria Cristina, 2018. "Spot volatility estimation using the Laplace transform," Econometrics and Statistics, Elsevier, vol. 6(C), pages 22-43.
  24. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
  25. Giacomo Toscano & Maria Cristina Recchioni, 2022. "Bias-optimal vol-of-vol estimation: the role of window overlapping," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 137-185, June.
  26. Zu, Yang, 2015. "Nonparametric specification tests for stochastic volatility models based on volatility density," Journal of Econometrics, Elsevier, vol. 187(1), pages 323-344.
  27. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
  28. Bandi, Federico & Corradi, Valentina & Moloche, Guillermo, 2009. "Bandwidth selection for continuous-time Markov processes," MPRA Paper 43682, University Library of Munich, Germany.
  29. Matthieu Garcin & Clément Goulet, 2015. "A fully non-parametric heteroskedastic model," Documents de travail du Centre d'Economie de la Sorbonne 15086, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.