IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1203.5176.html
   My bibliography  Save this item

International Stock Market Efficiency: A Non-Bayesian Time-Varying Model Approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
  2. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
  3. Okoroafor, Ugochi Chibuzor & Leirvik, Thomas, 2022. "Time varying market efficiency in the Brent and WTI crude market," Finance Research Letters, Elsevier, vol. 45(C).
  4. Rahman, Md. Lutfur & Lee, Doowon & Shamsuddin, Abul, 2017. "Time-varying return predictability in South Asian equity markets," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 179-200.
  5. Jiang, Jinjin & Li, Haiqi, 2020. "A new measure for market efficiency and its application," Finance Research Letters, Elsevier, vol. 34(C).
  6. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
  7. Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  8. Noda, Akihiko, 2016. "A test of the adaptive market hypothesis using a time-varying AR model in Japan," Finance Research Letters, Elsevier, vol. 17(C), pages 66-71.
  9. João Paulo Vieito & Wing-Keung Wong & Zhen-Zhen Zhu, 2016. "Could the global financial crisis improve the performance of the G7 stocks markets?," Applied Economics, Taylor & Francis Journals, vol. 48(12), pages 1066-1080, March.
  10. Shah, Anand & Bahri, Anu, 2022. "Metanomics: Adaptive market and volatility behaviour in Metaverse," MPRA Paper 114442, University Library of Munich, Germany.
  11. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2016. "Time-Varying Comovement of Foreign Exchange Markets," Papers 1610.04334, arXiv.org.
  12. Charfeddine, Lanouar & Khediri, Karim Ben & Aye, Goodness C. & Gupta, Rangan, 2018. "Time-varying efficiency of developed and emerging bond markets: Evidence from long-spans of historical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 632-647.
  13. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2022. "An Alternative Estimation Method for Time-Varying Parameter Models," Econometrics, MDPI, vol. 10(2), pages 1-27, April.
  14. Tran, Vu Le & Leirvik, Thomas, 2019. "A simple but powerful measure of market efficiency," Finance Research Letters, Elsevier, vol. 29(C), pages 141-151.
  15. Mikio Ito & Kiyotaka Maeda & Akihiko Noda, 2018. "The futures premium and rice market efficiency in prewar Japan," Economic History Review, Economic History Society, vol. 71(3), pages 909-937, August.
  16. Kenichi Hirayama & Akihiko Noda, 2019. "Measuring the Time-Varying Market Efficiency in the Prewar and Wartime Japanese Stock Market, 1924-1943," Papers 1911.04059, arXiv.org, revised May 2024.
  17. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
  18. Akihiko Noda, 2021. "On the evolution of cryptocurrency market efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 28(6), pages 433-439, March.
  19. Dzung Phan Tran Trung & Hung Pham Quang, 2019. "Adaptive Market Hypothesis: Evidence from the Vietnamese Stock Market," JRFM, MDPI, vol. 12(2), pages 1-16, May.
  20. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2021. "Time-Varying Comovement of Foreign Exchange Markets: A GLS-Based Time-Varying Model Approach," Mathematics, MDPI, vol. 9(8), pages 1-13, April.
  21. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2017. "An Alternative Estimation Method of a Time-Varying Parameter Model," Papers 1707.06837, arXiv.org, revised Dec 2017.
  22. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
  23. Philippe Goulet Coulombe, 2020. "Time-Varying Parameters as Ridge Regressions," Papers 2009.00401, arXiv.org, revised Nov 2024.
  24. Maria Kulikova & Gennady Kulikov, 2023. "Estimation of market efficiency process within time-varying autoregressive models by extended Kalman filtering approach," Papers 2310.04125, arXiv.org.
  25. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
  26. Onur Özdemir, 2022. "Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
  27. Achal Awasthi & Oleg Malafeyev, 2015. "Is the Indian Stock Market efficient - A comprehensive study of Bombay Stock Exchange Indices," Papers 1510.03704, arXiv.org.
  28. Tran, Vu Le & Leirvik, Thomas, 2020. "Efficiency in the markets of crypto-currencies," Finance Research Letters, Elsevier, vol. 35(C).
  29. Deniz Erer & Elif Erer & Selim Güngör, 2023. "The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outbreak and the global financial crisis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.