IDEAS home Printed from https://ideas.repec.org/p/zbw/udewwd/208.html
   My bibliography  Save this paper

Der Prognostiker des Jahres: Ein Zufallsergebnis? Möglichkeiten einer mehrdimensionalen Evaluierung von Konjunkturprognosen

Author

Listed:
  • Döhrn, Roland

Abstract

Man findet in zunehmendem Maße Versuche, Prognosen nicht nur danach zu bewerten, wie hoch ihre Treffsicherheit bei der Vorhersage einer Variablen ist, sondern die Prognosegüte bei einem Satz von Variablen ins Bild nehmen. Eine solche mehrdimensionale Evaluierung von Prognosen stellt zum Teil Neuland dar. Der vorliegende Beitrag stellt einige Kennziffern vor, die auf in der multivariaten Analyse gebräuchlichen Abstandsmaßen basieren und die für eine solche Evaluierung herangezogen werden können. Dabei zeigt sich, dass die Bewertung von Prognosen stark von dem gewählten Abstandsmaß und von der Auswahl der in die Evaluierung einbezogenen Variablen abhängt. Ein besonderes Problem resultiert dabei daraus, dass die prognostizierten Variablen in der Regeln nicht unabhängig von einander sind, Dies legt nahe, die Mahalanobis-Distanz als Abstandsmaß zu verwenden an Stelle der gebräuchlicheren Eulerschen Distanz oder einer City-Block-Metric. Allerdings bestraft die Mahalanobis-Distanz solche Prognosefehler härter, die den in der Vergangenheit beobachteten Korrelationen zwischen den Variablen widersprechen. Berücksichtigt man die Unsicherheit in den Daten, die als Referenz für die Bewertung der Prognosen herangezogen werden, so zeigt sich allerdings, dass die Abstandsmaße mit einem relativ großen Unschärfebereich zu versehen sind. Daher sollten aus kleinen Unterschieden in den Distanzmaßen keine allzu weitgehenden Schlüsse gezogen werden.

Suggested Citation

  • Döhrn, Roland, 2015. "Der Prognostiker des Jahres: Ein Zufallsergebnis? Möglichkeiten einer mehrdimensionalen Evaluierung von Konjunkturprognosen," IBES Diskussionsbeiträge 208, University of Duisburg-Essen, Institute of Business and Economic Studie (IBES).
  • Handle: RePEc:zbw:udewwd:208
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/107685/1/819405124.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tara M. Sinclair & H. O. Stekler & Warren Carnow, 2012. "A new approach for evaluating economic forecasts," Economics Bulletin, AccessEcon, vol. 32(3), pages 2332-2342.
    2. Döhrn Roland & Schmidt Christoph M., 2011. "Information or Institution?: On the Determinants of Forecast Accuracy," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 9-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Köhler & Jörg Döpke, 2023. "Will the last be the first? Ranking German macroeconomic forecasters based on different criteria," Empirical Economics, Springer, vol. 64(2), pages 797-832, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrens, Christoph, 2019. "Evaluating the Joint Efficiency of German Trade Forecasts. A nonparametric multivariate approach," Working Papers 9, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    2. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    3. Marina Riem, 2017. "Essays on the Behavior of Firms and Politicians," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 73.
    4. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    5. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    6. Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.
    7. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
    8. Christian Grimme & Robert Lehmann & Marvin Nöller, 2018. "Das ifo Importklima – ein erster Frühindikator für die Prognose der deutschen Importe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(12), pages 27-32, June.
    9. Ha Quyen Ngo & Niklas Potrafke & Marina Riem & Christoph Schinke, 2018. "Ideology and Dissent among Economists: The Joint Economic Forecast of German Economic Research Institutes," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 44(1), pages 135-152, January.
    10. Breuer, Sebastian & Elstner, Steffen, 2017. "Die Wachstumsperspektiven der deutschen Wirtschaft vor dem Hintergrund des demografischen Wandels: Die Mittelfristprojektion des Sachverständigenrates," Working Papers 07/2017, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    11. Håvard Hungnes, 2020. "Equal predictability test for multi-step-ahead system forecasts invariant to linear transformations," Discussion Papers 931, Statistics Norway, Research Department.
    12. Sergey V. Smirnov & Daria A. Avdeeva, 2016. "Wishful Bias in Predicting Us Recessions: Indirect Evidence," HSE Working papers WP BRP 135/EC/2016, National Research University Higher School of Economics.
    13. Eicher, Theo S. & Rollinson, Yuan Gao, 2023. "The accuracy of IMF crises nowcasts," International Journal of Forecasting, Elsevier, vol. 39(1), pages 431-449.
    14. Ines Fortin & Sebastian P. Koch & Klaus Weyerstrass, 2020. "Evaluation of economic forecasts for Austria," Empirical Economics, Springer, vol. 58(1), pages 107-137, January.
    15. Sergey V. Smirnov, 2014. "Predicting US Recessions: Does a Wishful Bias Exist?," HSE Working papers WP BRP 77/EC/2014, National Research University Higher School of Economics.
    16. Sinclair, Tara M. & Stekler, H.O. & Carnow, Warren, 2015. "Evaluating a vector of the Fed’s forecasts," International Journal of Forecasting, Elsevier, vol. 31(1), pages 157-164.
    17. Rülke Jan-Christoph, 2012. "Do Private Sector Forecasters Desire to Deviate From the German Council of Economic Experts?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 414-428, August.
    18. Bofinger, Peter & Buch, Claudia M. & Feld, Lars P. & Schmidt, Christoph M. & Wieland, Volker, 2013. "Gegen eine rückwärtsgewandte Wirtschaftspolitik. Jahresgutachten 2013/14 [Against a backward-looking economic policy. Annual Report 2013/14]," Annual Economic Reports / Jahresgutachten, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung, volume 127, number 201314, September.
    19. Tim Köhler & Jörg Döpke, 2023. "Will the last be the first? Ranking German macroeconomic forecasters based on different criteria," Empirical Economics, Springer, vol. 64(2), pages 797-832, February.
    20. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.

    More about this item

    Keywords

    Konjunkturprognosen; Prognoseevaluation; Mehrdimensionale Evaluierung; Eulersche Distanz; Mahalanobis-Distanz;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:udewwd:208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwessde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.