IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i10p3027-3047.html
   My bibliography  Save this article

Composite quantile regression for varying-coefficient single-index models

Author

Listed:
  • Yan Fan
  • Manlai Tang
  • Maozai Tian

Abstract

The varying-coefficient single-index model (VCSIM) is a very general and flexible tool for exploring the relationship between a response variable and a set of predictors. Popular special cases include single-index models and varying-coefficient models. In order to estimate the index-coefficient and the non parametric varying-coefficients in the VCSIM, we propose a two-stage composite quantile regression estimation procedure, which integrates the local linear smoothing method and the information of quantile regressions at a number of conditional quantiles of the response variable. We establish the asymptotic properties of the proposed estimators for the index-coefficient and varying-coefficients when the error is heterogeneous. When compared with the existing mean-regression-based estimation method, our simulation results indicate that our proposed method has comparable performance for normal error and is more robust for error with outliers or heavy tail. We illustrate our methodologies with a real example.

Suggested Citation

  • Yan Fan & Manlai Tang & Maozai Tian, 2016. "Composite quantile regression for varying-coefficient single-index models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(10), pages 3027-3047, May.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:10:p:3027-3047
    DOI: 10.1080/03610926.2014.894069
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.894069
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.894069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Lining & Härdle, Wolfgang Karl & Borke, Lukas & Benschop, Thijs, 2017. "FRM: A financial risk meter based on penalizing tail events occurrence," SFB 649 Discussion Papers 2017-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:10:p:3027-3047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.