IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2010-041.html
   My bibliography  Save this paper

Prognose mit nichtparametrischen Verfahren

Author

Listed:
  • Härdle, Wolfgang Karl
  • Schulz, Rainer
  • Wang, Weining

Abstract

Statistische Prognosen basieren auf der Annahme, dass ein funktionaler Zusammenhang zwischen der zu prognostizierenden Variable y und anderen j-dimensional beobachtbaren Variablen x = (x1,...xl) besteht. Kann der funktionale Zusammenhang geschätzt werden, so kann im Prinzip für jedes x der zugehörige Wert y prognostiziert werden. Bei den meisten Anwendungen wird angenommen, dass der funktionale Zusammenhang einem niedrigdimensionalen parametrischen Modell entspricht oder durch dieses zumindest gut wiedergegeben wird. Ein Beispiel im univariaten Fall ist das lineare Modell y = b0 + b1x. Sind die beiden unbekannten Parameter b0 und b1 mithilfe historischer Daten geschätzt, so lässt sich für jedes gegebene x sofort der zugehörige Wert y prognostizieren. Allerdings besteht hierbei die Gefahr, dass der wirkliche funktionale Zusammenhang nicht dem gewählten Modell entspricht. Dies kann infolge zu schlechten Prognosen führen. Nichtparametrische Verfahren gehen ebenfalls von einem funktionalen Zusammenhang aus, geben aber kein festes parametrisches Modell vor und zwängen die Daten damit in kein Prokrustes Bett. Sie sind deshalb hervorragend geeignet, um 1) Daten explorativ darzustellen, 2) parametrische Modelle zu überprüfen und 3) selbst als Schätzer für den funktionalen Zusammenhang zu dienen (Cleveland [2], Cleveland und Devlin [3]). Nichtparametrische Verfahren können daher problemlos auch zur Prognose eingesetzt werden. Dieses Kapitel ist wie folgt strukturiert. Abschnitt 9.2 stellt nichtparametrische Verfahren vor und erläutert deren grundsätzliche Struktur. Der Schwerpunkt liegt auf dem univariaten Regressionsmodell und auf der Motivation der vorgestellten Verfahren. Abschnitt 9.3 präsentiert eine praktische Anwendung für eine Zeitreihe von Wechselkursvolatilitäten. Es werden Prognosen mit nichtparametrischen Verfahren berechnet und deren Güte mit den Prognosen eines AR(1)-Zeitreihenmodells verglichen, vgl. auch Kapitel 14 dieses Buches. Es zeigt sich für die gewählte Anwendung, dass das parametrische Modell die Daten sehr gut erfasst. Das nichtparametrische Modell liefert in dieser Anwendung keine bessere Prognosegüte. Zugleich veranschaulicht die Anwendung, wie nichtparametrische Verfahren für die Modelvalidierung eingesetzt werden können. Und natürlich zeigt es auch, wie solche Verfahren für Prognosen eingesetzt werden können. Abschnitt 9.4 präsentiert die Literatur, die für weitere Lektüre herangezogen werden kann. Alle praktischen Beispiele im Text, welche mit dem Symbol [Q] versehen sind, lassen sich von der Addresse www.quantlet.de herunterladen.

Suggested Citation

  • Härdle, Wolfgang Karl & Schulz, Rainer & Wang, Weining, 2010. "Prognose mit nichtparametrischen Verfahren," SFB 649 Discussion Papers 2010-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2010-041
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56733/1/637055012.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wolfgang Hardle & Helmut Herwartz & Vladimir Spokoiny, 2003. "Time Inhomogeneous Multiple Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 55-95.
    2. Wolfgang Härdle & Helmut Lütkepohl & Rong Chen, 1997. "A Review of Nonparametric Time Series Analysis," International Statistical Review, International Statistical Institute, vol. 65(1), pages 49-72, April.
    3. Michael W. Brandt & Francis X. Diebold, 2006. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," The Journal of Business, University of Chicago Press, vol. 79(1), pages 61-74, January.
    4. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    5. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    6. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    7. Härdle, Wolfgang & Tschernig, Rolf, 2000. "Flexible time series analysis," SFB 373 Discussion Papers 2000,51, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hum:wpaper:sfb649dp2010-056 is not listed on IDEAS
    2. Agnieszka Janek & Tino Kluge & Rafal Weron & Uwe Wystup, 2010. "FX Smile in the Heston Model," HSC Research Reports HSC/10/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    3. Basteck, Christian & Daniëls, Tijmen R., 2010. "Every symmetric 3 x 3 global game of strategic complementarities is noise independent," SFB 649 Discussion Papers 2010-061, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2010-055 is not listed on IDEAS
    5. repec:hum:wpaper:sfb649dp2010-061 is not listed on IDEAS
    6. repec:hum:wpaper:sfb649dp2010-054 is not listed on IDEAS
    7. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.
    8. Grith, Maria & Krätschmer, Volker, 2010. "Parametric estimation of risk neutral density functions," SFB 649 Discussion Papers 2010-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2010. "Nonparametric regression with nonparametrically generated covariates," SFB 649 Discussion Papers 2010-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Panov, Vladimir, 2010. "Estimation of the signal subspace without estimation of the inverse covariance matrix," SFB 649 Discussion Papers 2010-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. repec:hum:wpaper:sfb649dp2010-059 is not listed on IDEAS
    13. Wiebach, Nicole & Hildebrandt, Lutz, 2010. "Context effects as customer reaction on delisting of brands," SFB 649 Discussion Papers 2010-056, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. repec:hum:wpaper:sfb649dp2010-047 is not listed on IDEAS
    15. repec:hum:wpaper:sfb649dp2010-051 is not listed on IDEAS
    16. Sabiwalsky, Ralf, 2010. "Executive compensation regulation and the dynamics of the pay-performance sensitivity," SFB 649 Discussion Papers 2010-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Schulze, Franziska, 2010. "Spatial dependencies in German matching functions," SFB 649 Discussion Papers 2010-054, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. repec:hum:wpaper:sfb649dp2010-050 is not listed on IDEAS
    19. repec:hum:wpaper:sfb649dp2010-049 is not listed on IDEAS
    20. repec:hum:wpaper:sfb649dp2010-045 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
    2. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    3. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
    4. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    5. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    6. repec:hum:wpaper:sfb649dp2010-041 is not listed on IDEAS
    7. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    8. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    9. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    10. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    11. Harris, Richard D.F. & Yilmaz, Fatih, 2010. "Estimation of the conditional variance-covariance matrix of returns using the intraday range," International Journal of Forecasting, Elsevier, vol. 26(1), pages 180-194, January.
    12. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
    13. Chris Motengwe & Angel Pardo, 2015. "A Study of Seasonality on the Safex Wheat Market," Agrekon, Taylor & Francis Journals, vol. 54(4), pages 45-72, November.
    14. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    15. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    16. Hiroyuki Kawakatsu, 2021. "Information in daily data volatility measurements," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1642-1656, April.
    17. Ahmed, Walid M.A., 2017. "The impact of foreign equity flows on market volatility during politically tranquil and turbulent times: The Egyptian experience," Research in International Business and Finance, Elsevier, vol. 40(C), pages 61-77.
    18. Ari Levine & Yao Hua Ooi & Matthew Richardson, 2016. "Commodities for the Long Run," NBER Working Papers 22793, National Bureau of Economic Research, Inc.
    19. G'abor Petneh'azi & J'ozsef G'all, 2018. "Exploring the predictability of range-based volatility estimators using RNNs," Papers 1803.07152, arXiv.org.
    20. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    21. Aharon, David Y. & Qadan, Mahmoud, 2020. "When do retail investors pay attention to their trading platforms?," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).

    More about this item

    Keywords

    time series; semiparametric model; k-NN estimation; local polynomial regression; volatility forecasting;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2010-041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.