IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200122.html
   My bibliography  Save this paper

A comparison of different nonparametric methods for inference on additive models

Author

Listed:
  • Dette, Holger
  • von Lieres und Wilkau, Carsten
  • Sperlich, Stefan

Abstract

In this article we highlight the main differences of available methods for the analysis of regression functions that are probably additive separable. We first discuss definition and interpretation of the most common estimators in practice. This is done by explaining the different ideas of modeling behind each estimator as well as what the procedures are doing to the data. Computational aspects are mentioned explicitly. The illustrated discussion concludes with a simulation study on the mean squared error for different marginal integration approaches. Next, various test statistics for checking additive separability are introduced and accomplished with asymptotic theory. Based on the asymptotic results under hypothesis as well as under the alternative of non additivity we compare the tests in a brief discussion. For the various statistics, different smoothing and bootstrap methods we perform a detailed simulation study. A main focus in the reported results is directed on the (non-) reliability of the methods when the covariates are strongly correlated among themselves. Again, a further point are the computational aspects. We found that the most striking differences lie in the different pre-smoothers that are used, but less in the different constructions of test statistics. Moreover, although some of the observed differences are strong, they surprisingly can not be revealed by asymptotic theory.

Suggested Citation

  • Dette, Holger & von Lieres und Wilkau, Carsten & Sperlich, Stefan, 2001. "A comparison of different nonparametric methods for inference on additive models," Technical Reports 2001,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200122
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/77351/2/2001-22.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Collomb, Gérard & Härdle, Wolfgang, 1986. "Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations," Stochastic Processes and their Applications, Elsevier, vol. 23(1), pages 77-89, October.
    2. W. González-Manteiga & R. Cao, 1993. "Testing the hypothesis of a general linear model using nonparametric regression estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(1), pages 161-188, December.
    3. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    4. Dette, Holger & von Lieres und Wilkau, Carsten, 2000. "Testing additivity by kernel based methods - what is a reasonable test?," Technical Reports 2000,39, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chunming & Dette, Holger, 2004. "A power comparison between nonparametric regression tests," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 289-301, February.
    2. Mammen, Enno & Van Keilegom, Ingrid & Yu, Kyusang, 2013. "Expansion for Moments of Regression Quantiles with Applications to Nonparametric Testing," LIDAM Discussion Papers ISBA 2013027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Zhu, Xuehu & Chen, Fei & Guo, Xu & Zhu, Lixing, 2016. "Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 263-283.
    4. Zhang, Chunming & Dette, Holger, 2003. "A power comparison between nonparametric regression tests," Technical Reports 2003,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Dette, Holger & von Lieres und Wilkau, Carsten, 2000. "Testing additivity by kernel based methods - what is a reasonable test?," Technical Reports 2000,39, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Holger Dette & Ingrid Spreckelsen, 2004. "Some comments on specification tests in nonparametric absolutely regular processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 159-172, March.
    7. Dette, Holger & Hetzler, Benjamin, 2004. "Specification tests indexed by bandwidths," Technical Reports 2004,48, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Gao, Jiti & Gijbels, Irene, 2005. "Bandwidth selection for nonparametric kernel testing," MPRA Paper 11982, University Library of Munich, Germany, revised Jun 2007.
    9. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
    10. Biedermann, Stefanie & Dette, Holger, 2000. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Technical Reports 2000,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Fengler, Matthias R. & Mammen, Enno & Vogt, Michael, 2013. "Additive modeling of realized variance: tests for parametric specifications and structural breaks," Economics Working Paper Series 1332, University of St. Gallen, School of Economics and Political Science.
    12. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    13. Dette, Holger & Spreckelsen, Ingrid, 2001. "Some comments on specification tests in nonparametric absolutely regular processes," Technical Reports 2001,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Biedermann, Stefanie & Dette, Holger, 2001. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 215-224, April.
    15. Pantelis Kalaitzidakis & Theofanis P. Mamuneas & Thanasis Stengos, 2008. "The Contribution of Pollution to Productivity Growth," Working Paper series 06_08, Rimini Centre for Economic Analysis.
    16. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    18. Temel, Tugrul T., 2001. "A Nonparametric Hypothesis Test Via The Bootstrap Resampling," 2001 Annual meeting, August 5-8, Chicago, IL 20600, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. E. Zacharias & T. Stengos, 2006. "Intertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 371-386.
    20. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.