IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v66y2004i3p289-301.html
   My bibliography  Save this article

A power comparison between nonparametric regression tests

Author

Listed:
  • Zhang, Chunming
  • Dette, Holger

Abstract

In this paper, we consider three major types of nonparametric regression tests that are based on kernel and local polynomial smoothing techniques. Their asymptotic power comparisons are established systematically under the fixed and contiguous alternatives, and are also illustrated through nonasymptotic investigations and finite-sample simulation studies.

Suggested Citation

  • Zhang, Chunming & Dette, Holger, 2004. "A power comparison between nonparametric regression tests," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 289-301, February.
  • Handle: RePEc:eee:stapro:v:66:y:2004:i:3:p:289-301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00353-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    2. W. González-Manteiga & R. Cao, 1993. "Testing the hypothesis of a general linear model using nonparametric regression estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(1), pages 161-188, December.
    3. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Zhihua Sun & Dongshan Luo & Xiaohua Zhou & Qingzhao Zhang, 2021. "Comparative studies on the adequacy check of parametric measurement error models with auxiliary variable," Statistical Papers, Springer, vol. 62(4), pages 1723-1751, August.
    3. Song Xi Chen & Jiti Gao, 2010. "Simultaneous Testing of Mean and Variance Structures in Nonlinear Time Series Models," School of Economics and Public Policy Working Papers 2010-28, University of Adelaide, School of Economics and Public Policy.
    4. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    5. Stefan Sperlich, 2013. "Comments on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 419-427, September.
    6. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    7. Anouar El Ghouch & Marc G. Genton & Taoufik Bouezmarni, 2013. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 455-470, September.
    8. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    9. Xu Guo & Tao Wang & Lixing Zhu, 2016. "Model checking for parametric single-index models: a dimension reduction model-adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1013-1035, November.
    10. Crujeiras, Rosa M. & Fernández-Casal, Rubén & González-Manteiga, Wenceslao, 2008. "An L2 -test for comparing spatial spectral densities," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2543-2551, October.
    11. Gao, Jiti & Gijbels, Irene, 2005. "Bandwidth selection for nonparametric kernel testing," MPRA Paper 11982, University Library of Munich, Germany, revised Jun 2007.
    12. Koul, Hira L. & Song, Weixing & Liu, Shan, 2014. "Model checking in Tobit regression via nonparametric smoothing," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 36-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chunming & Dette, Holger, 2003. "A power comparison between nonparametric regression tests," Technical Reports 2003,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    3. repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
    4. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    5. Mammen, Enno & Van Keilegom, Ingrid & Yu, Kyusang, 2013. "Expansion for Moments of Regression Quantiles with Applications to Nonparametric Testing," LIDAM Discussion Papers ISBA 2013027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    7. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    8. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    9. Dette, Holger & von Lieres und Wilkau, Carsten, 2000. "Testing additivity by kernel based methods - what is a reasonable test?," Technical Reports 2000,39, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    11. Holger Dette & Ingrid Spreckelsen, 2004. "Some comments on specification tests in nonparametric absolutely regular processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 159-172, March.
    12. Dette, Holger & Hetzler, Benjamin, 2004. "Specification tests indexed by bandwidths," Technical Reports 2004,48, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    14. Gao, Jiti & Gijbels, Irene, 2005. "Bandwidth selection for nonparametric kernel testing," MPRA Paper 11982, University Library of Munich, Germany, revised Jun 2007.
    15. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
    16. Hall, Peter & Yatchew, Adonis, 2005. "Unified approach to testing functional hypotheses in semiparametric contexts," Journal of Econometrics, Elsevier, vol. 127(2), pages 225-252, August.
    17. Biedermann, Stefanie & Dette, Holger, 2000. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Technical Reports 2000,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    18. Lawrence Dacuycuy, 2005. "On distribution approximation: a simple comparative study on procedural variations of the Zheng test," Economics Bulletin, AccessEcon, vol. 3(11), pages 1-10.
    19. Lawrence Dacuycuy, 2006. "Explaining male wage inequality in the Philippines: non-parametric and semiparametric approaches," Applied Economics, Taylor & Francis Journals, vol. 38(21), pages 2497-2511.
    20. Dette, Holger & von Lieres und Wilkau, Carsten & Sperlich, Stefan, 2001. "A comparison of different nonparametric methods for inference on additive models," Technical Reports 2001,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    21. Fengler, Matthias R. & Mammen, Enno & Vogt, Michael, 2013. "Additive modeling of realized variance: tests for parametric specifications and structural breaks," Economics Working Paper Series 1332, University of St. Gallen, School of Economics and Political Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:66:y:2004:i:3:p:289-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.