IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/200085.html
   My bibliography  Save this paper

Nonparametric estimation of homogeneous function

Author

Listed:
  • Tripathi, Gautam
  • Kim, Woocheol

Abstract

Consider the regression y = f(x) + e ' where E (e | x) = 0 and the exact functional form of f is unknown, although we do know that it is homogeneous of known degree r. Using a local linear approach we examine two ways of nonparametrically estimating f: (i) a direct or numeraire approach, and (ii) a projection based approach. We show that depending upon the nature of the conditional variance var (E | x), one approach may be asymptotically better than the other. Results of a small simulation experiment are presented to support our findings.

Suggested Citation

  • Tripathi, Gautam & Kim, Woocheol, 2000. "Nonparametric estimation of homogeneous function," SFB 373 Discussion Papers 2000,85, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200085
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62177/1/723859264.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Lewbel & Oliver Linton, 2003. "Nonparametric estimation of homothetic and homothetically separable functions," CeMMAP working papers 14/03, Institute for Fiscal Studies.
    2. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    3. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    4. Haag, Berthold R. & Hoderlein, Stefan & Pendakur, Krishna, 2009. "Testing and imposing Slutsky symmetry in nonparametric demand systems," Journal of Econometrics, Elsevier, vol. 153(1), pages 33-50, November.
    5. Arthur Lewbel & Oliver Linton, 2007. "Nonparametric Matching and Efficient Estimators of Homothetically Separable Functions," Econometrica, Econometric Society, vol. 75(4), pages 1209-1227, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.