IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/2066.html
   My bibliography  Save this paper

Nonparametric estimation of homothetic and homothetically separable functions

Author

Listed:
  • Lewbel, Arthur
  • Linton, Oliver

Abstract

For vectors x and w, let r(x,w) be a function that can be nonparametrically estimated consistently and asymptotically normally. We provide consistent, asymptotically normal estimators for the functions g and h, where r(x,w) = h[g(x),w], g is linearly homogeneous andh is monotonic in g. This framework encompasses homothetic and homothetically separable functions. Such models reduce the curse of dimensionality, provide a natural generalization of linear index models, and are widely used in utility, production, and cost function applications. Extensions to related functional forms include a generalized partly linear model with unknown link function. We provide simulation evidence on the small sample performance of our estimator, and we apply our method to a Chinese production dataset.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Lewbel, Arthur & Linton, Oliver, 2003. "Nonparametric estimation of homothetic and homothetically separable functions," LSE Research Online Documents on Economics 2066, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:2066
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/2066/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pedro Gozalo & Oliver Linton, 1994. "Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically," Cowles Foundation Discussion Papers 1075, Cowles Foundation for Research in Economics, Yale University.
    2. Andrew Chesher, 2001. "Quantile driven identification of structural derivatives," CeMMAP working papers 08/01, Institute for Fiscal Studies.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-345, March.
    5. Arnold Zellner & Hang Ryu, 1998. "Alternative functional forms for production, cost and returns to scale functions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(2), pages 101-127.
    6. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    7. Härdle, Wolfgang & Kim, Woocheol & Tripathi, Gautam, 2000. "Nonparametric estimation of additive models with homogeneous components," SFB 373 Discussion Papers 2000,48, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    9. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    10. Ahn, Hyungtaik, 1995. "Nonparametric two-stage estimation of conditional choice probabilities in a binary choice model under uncertainty," Journal of Econometrics, Elsevier, vol. 67(2), pages 337-378, June.
    11. Andrews, Donald W.K., 1986. "Empirical process methods in econometrics," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 37, pages 2247-2294, Elsevier.
    12. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    13. Jefferson, Gary & Hu, Albert G. Z. & Guan, Xiaojing & Yu, Xiaoyun, 2003. "Ownership, performance, and innovation in China's large- and medium-size industrial enterprise sector," China Economic Review, Elsevier, vol. 14(1), pages 89-113.
    14. Mark Yuying An, 2000. "A Semiparametric Distribution for Willingness to Pay and Statistical Inference with Dichotomous Choice Contingent Valuation Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 487-500.
    15. Chen, Heng Z. & Randall, Alan, 1997. "Semi-nonparametric estimation of binary response models with an application to natural resource valuation," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 323-340.
    16. Primont, Daniel & Primont, Diane, 1994. "Homothetic non-parametric production models," Economics Letters, Elsevier, vol. 45(2), pages 191-195, June.
    17. Creel, Michael & Loomis, John, 1997. "Semi-nonparametric Distribution-Free Dichotomous Choice Contingent Valuation," Journal of Environmental Economics and Management, Elsevier, vol. 32(3), pages 341-358, March.
    18. Masry, Elias, 1996. "Multivariate regression estimation local polynomial fitting for time series," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 81-101, December.
    19. Horowitz, Joel L, 2001. "Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function," Econometrica, Econometric Society, vol. 69(2), pages 499-513, March.
    20. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    21. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-270, March.
    22. Horowitz, Joel L. & Mammen, Enno, 2002. "Nonparametric estimation of an additive model with a link function," SFB 373 Discussion Papers 2002,63, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    23. Tripathi, Gautam & Kim, Woocheol, 2003. "Nonparametric Estimation Of Homogeneous Functions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 640-663, August.
    24. Richard Blundell & James L. Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers 09/01, Institute for Fiscal Studies.
    25. Hanoch, Giora & Rothschild, Michael, 1972. "Testing the Assumptions of Production Theory: A Nonparametric Approach," Journal of Political Economy, University of Chicago Press, vol. 80(2), pages 256-275, March-Apr.
    26. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
    27. Joel L. Horowitz & Enno Mammen, 2002. "Nonparametric estimation of an additive model with a link function," CeMMAP working papers CWP19/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    28. Elias Masry, 1996. "Multivariate Local Polynomial Regression For Time Series:Uniform Strong Consistency And Rates," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(6), pages 571-599, November.
    29. Daniel McFadden, 1996. "Computing Willingness-to-Pay in Random Utility Models," Working Papers _011, University of California at Berkeley, Econometrics Laboratory Software Archive.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Nazmul Khan, 2022. "Estimating empirical marginal adjustment cost function: a power series approach," Empirical Economics, Springer, vol. 63(6), pages 3185-3210, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Lewbel & Oliver Linton, 2007. "Nonparametric Matching and Efficient Estimators of Homothetically Separable Functions," Econometrica, Econometric Society, vol. 75(4), pages 1209-1227, July.
    2. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    5. Linton, Oliver & Mammen, Enno, 2004. "Estimating semiparametric ARCH (∞) models by kernel smoothing methods," LSE Research Online Documents on Economics 24762, London School of Economics and Political Science, LSE Library.
    6. Caetano, Carolina & Rothe, Christoph & Yıldız, Neşe, 2016. "A discontinuity test for identification in triangular nonseparable models," Journal of Econometrics, Elsevier, vol. 193(1), pages 113-122.
    7. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    8. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    9. Su, Liangjun & Ullah, Aman, 2008. "Local polynomial estimation of nonparametric simultaneous equations models," Journal of Econometrics, Elsevier, vol. 144(1), pages 193-218, May.
    10. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    11. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    12. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    13. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    14. Huang, Liquan & Khalil, Umair & Yıldız, Neşe, 2019. "Identification and estimation of a triangular model with multiple endogenous variables and insufficiently many instrumental variables," Journal of Econometrics, Elsevier, vol. 208(2), pages 346-366.
    15. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    16. Lewbel, Arthur & Lu, Xun & Su, Liangjun, 2015. "Specification testing for transformation models with an application to generalized accelerated failure-time models," Journal of Econometrics, Elsevier, vol. 184(1), pages 81-96.
    17. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    18. Das, M., 2005. "Instrumental variables estimators of nonparametric models with discrete endogenous regressors," Journal of Econometrics, Elsevier, vol. 124(2), pages 335-361, February.
    19. Cai, Zongwu & Das, Mitali & Xiong, Huaiyu & Wu, Xizhi, 2006. "Functional coefficient instrumental variables models," Journal of Econometrics, Elsevier, vol. 133(1), pages 207-241, July.
    20. Pere Riera & Raúl Brey & Guillermo Gándara, 2008. "Bid design for non-parametric contingent valuation with a single bounded dichotomous choice format," Hacienda Pública Española / Review of Public Economics, IEF, vol. 186(3), pages 43-60, October.

    More about this item

    Keywords

    Cost function; economies scale; homogeneous function; homothetic function; index models; nonparametric; production function; separability.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:2066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.