IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199764.html
   My bibliography  Save this paper

Risikomessung mit VaR für Portfolios: Diskussion und empirischer Vergleich verschiedener Berechnungsmethoden

Author

Listed:
  • Böhmer, Ekkehart
  • Sperlich, Stefan

Abstract

In dieser Arbeit werden zwei Methoden zur Ermittlung der Eigenkapitalunterlegung von Risikopositionen und die Auswirkungen unterschiedlicher Verteilungsannahmen auf das Value-at-Risk (VaR) untersucht. Die empirischen Ergebnisse basieren auf zwei Beispielportfolios aus DAX-Aktien und einer Simulationsstudie. Wir zeigen, daß sich Verteilungen, die sich gut zur Beschreibung von Aktienrenditen eignen, nicht unbedingt zur Kalkulation des VaR für Portfolios verwendet werden sollten. Dieses Ergebnis erweitert bisherige Analysen des VaR-Ansatzes, die oft nur das Risiko einzelner Aktien analysieren, obwohl in der Praxis meist die Risiken von Portfolios unterlegt werden müssen.

Suggested Citation

  • Böhmer, Ekkehart & Sperlich, Stefan, 1997. "Risikomessung mit VaR für Portfolios: Diskussion und empirischer Vergleich verschiedener Berechnungsmethoden," SFB 373 Discussion Papers 1997,64, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199764
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/66242/1/729550583.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    2. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    3. de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
    4. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    5. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    6. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    7. José Santiago Fajardo Barbachan & Aquiles Rocha de Farias & José Renato Haas Ornelas, 2008. "A Goodness-of-Fit Test with Focus on Conditional Value at Risk," Brazilian Review of Finance, Brazilian Society of Finance, vol. 6(2), pages 139-155.
    8. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    9. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
    10. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    11. Maria S. Heracleous, 2007. "Sample Kurtosis, GARCH-t and the Degrees of Freedom Issue," Economics Working Papers ECO2007/60, European University Institute.
    12. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    13. Gungor, Sermin & Luger, Richard, 2009. "Exact distribution-free tests of mean-variance efficiency," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 816-829, December.
    14. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    15. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    16. Phoebe Koundouri & Nikolaos Kourogenis, 2011. "On the Distribution of Crop Yields: Does the Central Limit Theorem Apply?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1341-1357.
    17. Pitt, M.K. & Walker, S.G., 2001. "Construction of Stationary Time Series via the Giggs Sampler with Application to Volatility Models," The Warwick Economics Research Paper Series (TWERPS) 595, University of Warwick, Department of Economics.
    18. Bryan Kelly & Hao Jiang, 2013. "Tail Risk and Asset Prices," NBER Working Papers 19375, National Bureau of Economic Research, Inc.
    19. Hartmann, Philipp & Straetmans, Stefan & de Vries, Casper, 2004. "Fundamentals and joint currency crises," Working Paper Series 324, European Central Bank.
    20. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.