IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/19942.html
   My bibliography  Save this paper

Testing increasing dispersion

Author

Listed:
  • Härdle, Wolfgang
  • Park, Byeong

Abstract

Increasing dispersion in regression analysis means that with positive changes of the explanatory variable the residual variance increases. Motivated by theoretical questions in stability of demand systems we consider the question of increasing dispersion in a nonparameteric way. It amounts to testing the positive definiteness of differences of covariance matrices. The asymptotic distribution of the smallest eigenvalue of this difference is rather complicated that is why we also apply bootstrapping. The proposed method is applied to family expenditure data from the United Kingdom.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Härdle, Wolfgang & Park, Byeong, 1994. "Testing increasing dispersion," SFB 373 Discussion Papers 1994,2, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:19942
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    2. Hall, Peter & Hardle, Wolfgang & Simar, Leopold, 1993. "On the inconsistency of bootstrap distribution estimators," Computational Statistics & Data Analysis, Elsevier, vol. 16(1), pages 11-18, June.
    3. Hardle, Wolfgang & Hildenbrand, Werner & Jerison, Michael, 1991. "Empirical Evidence on the Law of Demand," Econometrica, Econometric Society, vol. 59(6), pages 1525-1549, November.
    4. Härdle, Wolfgang & Hart, Jeffrey D., 1992. "A Bootstrap Test for Positive Definiteness of Income Effect Matrices," Econometric Theory, Cambridge University Press, vol. 8(2), pages 276-292, June.
    5. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    6. Hardle, W. & Marron, J. S., 1995. "Fast and simple scatterplot smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 20(1), pages 1-17, July.
    7. Hardle, W. & Hart, J., 1990. "A bootstrap test for positive definiteness of income effect matrices," LIDAM Discussion Papers CORE 1990053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. repec:cup:etheor:v:8:y:1992:i:2:p:276-90 is not listed on IDEAS
    9. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez-Poo, Juan M. & Linton, Oliver Bruce, 1998. "Nonparametric factor analysis of time series," SFB 373 Discussion Papers 1998,70, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    4. Hardle, W. & Park, B. U., 1995. "Testing increasing dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 19(6), pages 641-653, June.
    5. Bertschek, Irene & Lechner, Michael, 1998. "Convenient estimators for the panel probit model," Journal of Econometrics, Elsevier, vol. 87(2), pages 329-371, September.
    6. Oliver Linton, 1997. "Second Order Approximation in a Linear Regression with Heteroskedasticity for Unknown Form," Cowles Foundation Discussion Papers 1151, Cowles Foundation for Research in Economics, Yale University.
    7. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    8. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    9. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    10. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    11. Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
    12. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    13. Néstor Duch-Brown & José García-Quevedo & Daniel Montolio, 2011. "The link between public support and private R&D effort: What is the optimal subsidy?," Working Papers XREAP2011-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    14. Austan Goolsbee & David B. Gross, 1997. "Estimating Adjustment Costs with Data on Heterogeneous Capital Goods," NBER Working Papers 6342, National Bureau of Economic Research, Inc.
    15. Keith Vorkink & Douglas J. Hodgson & Oliver Linton, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639.
    16. Das, J.W.M. & Dominitz, J. & van Soest, A.H.O., 1997. "Comparing Predictions and Outcomes : Theory and Application to Income Changes," Other publications TiSEM 6eef11dd-0ae4-4673-b8c0-2, Tilburg University, School of Economics and Management.
    17. Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Townsend, John P. & Brorsen, B. Wade, 2000. "Cost Of Forward Contracting Hard Red Winter Wheat," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(1), pages 1-6, April.
    19. Simon J. Evenett & Wolfgang Keller, 2002. "On Theories Explaining the Success of the Gravity Equation," Journal of Political Economy, University of Chicago Press, vol. 110(2), pages 281-316, April.
    20. J. B. Engberg & T. Kim, "undated". "Person or Place? Parametric and semiparametric estimates of intrametropolitan earnings variation," Institute for Research on Poverty Discussion Papers 1089-96, University of Wisconsin Institute for Research on Poverty.

    More about this item

    JEL classification:

    • G35 - Financial Economics - - Corporate Finance and Governance - - - Payout Policy
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:19942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.