IDEAS home Printed from https://ideas.repec.org/p/zbw/kondp2/236.html
   My bibliography  Save this paper

Optimal industrial classification: [an application to the German industrial classification system]

Author

Listed:
  • Chipman, John Somerset
  • Winker, Peter

Abstract

A widely used method in the analysis of complex econometric models is to replace the "true model" by an aggregative one in which the variables are grouped and replaced by sums or weighted averages of the variables in each group. The analysis of the problem of choosing an aggregative model optimally for modes of aggregation specified in advance leads to a formula for the aggregation bias based on the mean-square forecast error. Taking this formula as objective function one would wish to choose a grouping that minimizes aggregation bias. Unfortunately this results in an optimization problem of a high degree of complexity, which means that there is probably no exact optimization algorithm that works in economic Computing time. In the last few years however, many efficient multiple-purpose optimization heuristics have been developed for complex problems such as the traveling salesman problem, optimal chip layout or optimal portfolio composition. One example of such an algorithm is the Threshold Accepting Algorithm (TA). We implement TA for the optimal aggregation of price indices. The algorithm and the resulting groupings are presented. The results show that the use of Standard or "official" modes of aggregation will in general be far from being optimal.

Suggested Citation

  • Chipman, John Somerset & Winker, Peter, 1994. "Optimal industrial classification: [an application to the German industrial classification system]," Discussion Papers, Series II 236, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
  • Handle: RePEc:zbw:kondp2:236
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/101775/1/756464250.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thompson, Gary D. & Lyon, Charles C., 1992. "A generalized test for perfect aggregation," Economics Letters, Elsevier, vol. 40(4), pages 389-396, December.
    2. Paul A. Samuelson, 1953. "Prices of Factors and Goods in General Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 21(1), pages 1-20.
    3. Pesaran, M Hashem & Pierse, Richard G & Kumar, Mohan S, 1989. "Econometric Analysis of Aggregation in the Context of Linear Prediction Models," Econometrica, Econometric Society, vol. 57(4), pages 861-888, July.
    4. Winker, Peter, 1992. "Some notes on the computational complexity of optimal aggregation," Discussion Papers, Series II 184, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    5. Cotterman, R & Peracchi, F, 1992. "Classification and Aggregation: An Application to Industrial Classification in CPS Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(1), pages 31-51, Jan.-Marc.
    6. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    7. Edward E. Leamer, 1982. "Optimal Aggegation of Linear Systems," UCLA Economics Working Papers 240, UCLA Department of Economics.
    8. Winker, Peter, 1995. "Identification of multivariate AR-models by threshold accepting," Computational Statistics & Data Analysis, Elsevier, vol. 20(3), pages 295-307, September.
    9. Gunter Dueck & Peter Winker, 1992. "New concepts and algorithms for portfolio choice," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 8(3), pages 159-178, September.
    10. Geweke, John, 1985. "Macroeconometric Modeling and the Theory of the Representative Agent," American Economic Review, American Economic Association, vol. 75(2), pages 206-210, May.
    11. Peter Winker, 2000. "Optimized Multivariate Lag Structure Selection," Computational Economics, Springer;Society for Computational Economics, vol. 16(1/2), pages 87-103, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John S.nChipman & Peter Winker, "undated". "Optimal Industrial Classification in a Dynamic Model of Price Adjustment," Computing in Economics and Finance 1996 _013, Society for Computational Economics.
    2. Chipman, J. & Winker, P., 2005. "Optimal aggregation of linear time series models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 311-331, April.
    3. Chipman, John Somerset & Winker, Peter, 1994. "Optimal industrial classification with heteroskedasticity correction: An application to the Swedish industrial classification system," Discussion Papers, Series II 237, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    4. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    5. Oet, Mikhail V. & Bianco, Timothy & Gramlich, Dieter & Ong, Stephen J., 2013. "SAFE: An early warning system for systemic banking risk," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4510-4533.
    6. Pesaran, M. Hashem & Chudik, Alexander, 2014. "Aggregation in large dynamic panels," Journal of Econometrics, Elsevier, vol. 178(P2), pages 273-285.
    7. Wu, JunJie & Adams, Richard M., 2002. "Micro Versus Macro Acreage Response Models: Does Site-Specific Information Matter?," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-21, July.
    8. Ferraresi Tommaso & Roventini Andrea & Semmler Willi, 2019. "Macroeconomic Regimes, Technological Shocks and Employment Dynamics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(4), pages 599-625, August.
    9. Peter Winker & Dietmar Maringer, 2004. "Optimal Lag Structure Selection in VEC-Models," Contributions to Economic Analysis, in: New Directions in Macromodelling, pages 213-234, Emerald Group Publishing Limited.
    10. Gatu, Cristian & Kontoghiorghes, Erricos J., 2006. "Estimating all possible SUR models with permuted exogenous data matrices derived from a VAR process," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 721-739, May.
    11. Gatu, Cristian & Kontoghiorghes, Erricos J. & Gilli, Manfred & Winker, Peter, 2008. "An efficient branch-and-bound strategy for subset vector autoregressive model selection," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1949-1963, June.
    12. Winker, Peter, 1995. "Identification of multivariate AR-models by threshold accepting," Computational Statistics & Data Analysis, Elsevier, vol. 20(3), pages 295-307, September.
    13. Manfred GILLI & Peter WINKER, 2008. "A review of heuristic optimization methods in econometrics," Swiss Finance Institute Research Paper Series 08-12, Swiss Finance Institute.
    14. Winker, Peter & Fang, Kai-Tai, 1995. "Application of threshold accepting to the evaluation of the discrepancy of a set of points," Discussion Papers, Series II 248, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    15. Alessandro Bellocchi & Edgar J. Sanchez Carrera & Giuseppe Travaglini, 2021. "What drives TFP long-run dynamics in five large European economies?," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 569-595, July.
    16. Campos, Eduardo Lima & Cysne, Rubens Penha, 2017. "A time-varying fiscal reaction function for Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 795, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    17. Iftekhar, M. S. & Tisdell, J. G., 2018. "Learning in repeated multiple unit combinatorial auctions: An experimental study," Working Papers 267301, University of Western Australia, School of Agricultural and Resource Economics.
    18. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    19. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    20. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kondp2:236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwkonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.