IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00645778.html
   My bibliography  Save this paper

Multivariate VaRs for operational risk capital computation: a vine structure approach

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Bertrand Hassani

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

The Basel Advanced Measurement Approach requires financial institutions to compute capital requirements on internal data sets. In this paper we introduce a new methodology permitting capital requirements to be linked with operational risks. The data are arranged in a matrix of 56 cells. Constructing a vine architecture, which is a bivariate decomposition of a n-dimensional structure (n > 2), we present a novel approach to compute multivariate operational risk VaRs. We discuss multivariate results regarding the impact of the dependence structure on the one hand, and of LDF modeling on the other. Our method is simple to carry out, easy to interpret and complies with the new Basel Committee requirements.

Suggested Citation

  • Dominique Guegan & Bertrand Hassani, 2013. "Multivariate VaRs for operational risk capital computation: a vine structure approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00645778, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00645778
    DOI: 10.1504/IJRAM.2013.057104
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
    2. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    3. Mangold, Benedikt, 2017. "New concepts of symmetry for copulas," FAU Discussion Papers in Economics 06/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
    4. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    5. Dominique Guegan & Bertrand Hassani, 2015. "Risk or Regulatory Capital? Bringing distributions back in the foreground," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169268, HAL.
    6. Dominique Guegan & Bertrand K. Hassani, 2016. "Risk Measures At Risk- Are we missing the point? Discussions around sub-additivity and distortion," Documents de travail du Centre d'Economie de la Sorbonne 16039, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Dominique Gu�gan & Bertrand Hassani, 2015. "Risk or Regulatory Capital? Bringing distributions back in the foreground," Working Papers 2015:18, Department of Economics, University of Venice "Ca' Foscari".
    8. Dominique Guegan & Bertrand K. Hassani, 2016. "Risk Measures At Risk- Are we missing the point? Discussions around sub-additivity and distortion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01318093, HAL.
    9. Mejdoub, Hanène & Ben Arab, Mounira, 2018. "Impact of dependence modeling of non-life insurance risks on capital requirement: D-Vine Copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 208-218.
    10. Dominique Guegan & Bertrand K Hassani, 2015. "Risk or Regulatory Capital? Bringing distributions back in the foreground," Documents de travail du Centre d'Economie de la Sorbonne 15046, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Dominique Guegan & Bertrand K. Hassani, 2016. "Risk Measures At Risk- Are we missing the point? Discussions around sub-additivity and distortion," Post-Print halshs-01318093, HAL.
    12. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    13. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
    14. Dominique Guegan & Bertrand Hassani, 2015. "Risk or Regulatory Capital? Bringing distributions back in the foreground," Post-Print halshs-01169268, HAL.
    15. Dominique Guegan & Bertrand Hassani, 2014. "Stress Testing Engineering: the real risk measurement?," Post-Print halshs-00951593, HAL.
    16. Bertrand K. Hassani & Alexis Renaudin, 2018. "The Cascade Bayesian Approach: Prior Transformation for a Controlled Integration of Internal Data, External Data and Scenarios," Risks, MDPI, vol. 6(2), pages 1-17, April.
    17. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00645778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.