IDEAS home Printed from https://ideas.repec.org/p/zbw/hwwirp/154.html
   My bibliography  Save this paper

A spatial computable general equilibrium model for the analysis of regional climate change impacts and adaptation policies

Author

Listed:
  • Jahn, Malte

Abstract

Climate change may affect subnational regions in very different ways. In this paper, a spatial computable general equilibrium (SCGE) model is constructed and a theoretical framework is developed to study impacts of climate change induced extreme weather events and of corresponding adaptation policies on a regional economy, focusing on water-related extreme events. The model makes use of regionalized input-output tables to represent the regional economy and takes into account different zones inside the region which have different socio-economic structures and also different levels of exposure to extreme weather. The model is used to estimate possible spatial effects and regional economic losses of climate change induced ood events in the city of Hamburg, Germany and to evaluate flood adaptation measures.

Suggested Citation

  • Jahn, Malte, 2014. "A spatial computable general equilibrium model for the analysis of regional climate change impacts and adaptation policies," HWWI Research Papers 154, Hamburg Institute of International Economics (HWWI).
  • Handle: RePEc:zbw:hwwirp:154
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/104545/1/791918092.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anas, Alex & Xu, Rong, 1999. "Congestion, Land Use, and Job Dispersion: A General Equilibrium Model," Journal of Urban Economics, Elsevier, vol. 45(3), pages 451-473, May.
    2. Fabio, Farinosi & Carrera, Lorenzo & Maziotis, Alexandros & Mysiak, Jaroslav & Eboli, Fabio & Standardi, Gabriele, 2012. "Policy-relevant Assessment Method of Socio-economic Impacts of Floods: An Italian Case Study," Climate Change and Sustainable Development 143117, Fondazione Eni Enrico Mattei (FEEM).
    3. Alex Anas & Yu Liu, 2007. "A Regional Economy, Land Use, And Transportation Model (Relu‐Tran©): Formulation, Algorithm Design, And Testing," Journal of Regional Science, Wiley Blackwell, vol. 47(3), pages 415-455, August.
    4. Michael Berlemann & Gerit Vogt, 2007. "Kurzfristige Wachstumseffekte von Naturkatastrophen," ifo Working Paper Series 52, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    5. Kowalewski, Julia, 2012. "Regionalization of national input-output tables: Empirical evidence on the use of the FLQ formula," HWWI Research Papers 126, Hamburg Institute of International Economics (HWWI).
    6. A. T. Flegg & C. D. Webber, 1997. "On the Appropriate Use of Location Quotients in Generating Regional Input-Output Tables: Reply," Regional Studies, Taylor & Francis Journals, vol. 31(8), pages 795-805.
    7. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    8. repec:hrs:journl::v:3:y:2011:i:2:p:13-25 is not listed on IDEAS
    9. Caroline Katsman & A. Sterl & J. Beersma & H. Brink & J. Church & W. Hazeleger & R. Kopp & D. Kroon & J. Kwadijk & R. Lammersen & J. Lowe & M. Oppenheimer & H. Plag & J. Ridley & H. Storch & D. Vaugha, 2011. "Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example," Climatic Change, Springer, vol. 109(3), pages 617-645, December.
    10. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    11. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    12. Hiroyuki SHIBUSAWA & Yuzuru MIYATA, 2011. "Evaluating The Dynamic And Spatial Economic Impacts Of An Earthquake: A Cge Application To Japan," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(2), pages 13-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirte, Georg & Nitzsche, Eric & Tscharaktschiew, Stefan, 2018. "Optimal adaptation in cities," Land Use Policy, Elsevier, vol. 73(C), pages 147-169.
    2. Christin Hoffmann & Gunter Stephan, 2018. "Regional Flood Impacts And Adaptation In A Federal Setting: A Spatial Computable General Equilibrium Analysis For Switzerland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-36, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    2. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    3. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    4. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    5. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    6. Hirte, Georg & Tscharaktschiew, Stefan, 2018. "The impact of anti-congestion policies and the role of labor-supply margins," CEPIE Working Papers 04/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    7. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    9. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    10. Kowalewski, Julia, 2012. "Inter-industrial relations and sectoral employment development in German regions," HWWI Research Papers 127, Hamburg Institute of International Economics (HWWI).
    11. Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.
    12. Ioannis Tikoudis & Walid Oueslati, 2021. "MOLES: A New Approach to Modeling the Environmental and Economic Impacts of Urban Policies," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 641-690, October.
    13. Robson, Edward N. & Wijayaratna, Kasun P. & Dixit, Vinayak V., 2018. "A review of computable general equilibrium models for transport and their applications in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 31-53.
    14. Inoue, Hiroyasu & Todo, Yasuyuki, 2017. "Firm-level simulation of supply chain disruption triggered by actual and predicted earthquakes," MPRA Paper 82920, University Library of Munich, Germany, revised 22 Feb 2017.
    15. Ruth Abegaz & Fei Wang & Jun Xu, 2024. "History, causes, and trend of floods in the U.S.: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 13715-13755, December.
    16. David Mendoza‐Tinoco & Yixin Hu & Zhao Zeng & Konstantinos J. Chalvatzis & Ning Zhang & Albert E. Steenge & Dabo Guan, 2020. "Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1612-1631, August.
    17. Jie Zhang & Meng Lu & Lulu Zhang & Yadong Xue, 2021. "Assessing indirect economic losses of landslides along highways," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2775-2796, April.
    18. Kowalewski Julia, 2013. "Inter-industrial Relations and Sectoral Employment Development in German Regions," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(4), pages 486-504, August.
    19. K. Jenkins, 2013. "Indirect economic losses of drought under future projections of climate change: a case study for Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1967-1986, December.
    20. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwwirp:154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hwwiide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.