IDEAS home Printed from https://ideas.repec.org/p/zbw/fmpwps/3.html
   My bibliography  Save this paper

Emergence of a Core-Periphery Structure in a Simple Dynamic Model of the Interbank Market

Author

Listed:
  • Lux, Thomas

Abstract

This paper studies a simple dynamic model of interbank credit relationships. Starting from a given balance sheet structure of a banking system with a realistic distribution of bank sizes, the necessity of establishing interbank credit connections 3merges from idiosyncratic liquidity shocks. Banks initially choose potential trading partners randomly, but form preferential relationships via an elementary reinforcement learning algorithm. As it turns out, the dynamic evolution of this system displays a formation of a core-periphery structure with mainly the largest banks assuming the roles of money center banks mediating between the liquidity needs of many smaller banks. Statistical analysis shows that this evolving interbank market shares virtually all of the salient characteristics of interbank credit relationship that have been put forthin recent literature. Preferential interest rates for borrowers with strong attachment to a lender may prevent the system from becoming extortionary and guarantee the survival of the small peripherical banks.

Suggested Citation

  • Lux, Thomas, 2014. "Emergence of a Core-Periphery Structure in a Simple Dynamic Model of the Interbank Market," FinMaP-Working Papers 3, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  • Handle: RePEc:zbw:fmpwps:3
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/102266/1/wp-03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hajime Inaoka & Takuto Ninomiya & Ken Taniguchi & Tokiko Shimizu & Hideki Takayasu, 2004. "Fractal Network derived from banking transaction -- An analysis of network structures formed by financial institutions --," Bank of Japan Working Paper Series 04-E-4, Bank of Japan.
    2. Soramäki, Kimmo & Bech, Morten L. & Arnold, Jeffrey & Glass, Robert J. & Beyeler, Walter E., 2007. "The topology of interbank payment flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 317-333.
    3. Franziska Bremus & Claudia M. Buch & Katheryn N. Russ & Monika Schnitzer, 2018. "Big Banks and Macroeconomic Outcomes: Theory and Cross‐Country Evidence of Granularity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1785-1825, December.
    4. Grzegorz Haᴌaj & Christoffer Kok, 2015. "Modelling the emergence of the interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 653-671, April.
    5. in ’t Veld, Daan & van Lelyveld, Iman, 2014. "Finding the core: Network structure in interbank markets," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 27-40.
    6. Craig, Ben & von Peter, Goetz, 2014. "Interbank tiering and money center banks," Journal of Financial Intermediation, Elsevier, vol. 23(3), pages 322-347.
    7. Kartik Anand & Ben Craig & Goetz von Peter, 2015. "Filling in the blanks: network structure and interbank contagion," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 625-636, April.
    8. Hubert P. Janicki & Edward Simpson Prescott, 2006. "Changes in the size distribution of U.S. banks: 1960-2005," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 92(Fall), pages 291-316.
    9. Huberto M. Ennis, 2001. "On the size distribution of banks," Economic Quarterly, Federal Reserve Bank of Richmond, issue Fall, pages 1-25.
    10. Fricke, Daniel & Lux, Thomas, 2012. "Core-periphery structure in the overnight money market: Evidence from the e-MID trading platform," Kiel Working Papers 1759, Kiel Institute for the World Economy (IfW Kiel).
    11. Cocco, João F. & Gomes, Francisco J. & Martins, Nuno C., 2009. "Lending relationships in the interbank market," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 24-48, January.
    12. Hyun Song Shin, 2009. "Securitisation and Financial Stability," Economic Journal, Royal Economic Society, vol. 119(536), pages 309-332, March.
    13. HyunSong Shin, 2009. "Securitisation and Financial Stability," Economic Journal, Royal Economic Society, vol. 119(536), pages 309-332, March.
    14. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "Network topology of the interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 677-684.
    15. Fricke, Daniel & Finger, Karl & Lux, Thomas, 2013. "On assortative and disassortative mixing in scale-free networks: The case of interbank credit networks," Kiel Working Papers 1830, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hüser, Anne-Caroline & Hałaj, Grzegorz & Kok, Christoffer & Perales, Cristian & van der Kraaij, Anton, 2018. "The systemic implications of bail-in: A multi-layered network approach," Journal of Financial Stability, Elsevier, vol. 38(C), pages 81-97.
    2. Cheng, Xian & Zhao, Haichuan, 2019. "Modeling, analysis and mitigation of contagion in financial systems," Economic Modelling, Elsevier, vol. 76(C), pages 281-292.
    3. Berg, Matthew & Hartley, Brian & Richters, Oliver, 2015. "A stock-flow consistent input–output model with applications to energy price shocks, interest rates, and heat emissions," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 17(1).
    4. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas, 2014. "Emergence of a core-periphery structure in a simple dynamic model of the interbank market," Kiel Working Papers 1917, Kiel Institute for the World Economy (IfW Kiel).
    2. Lux, Thomas, 2015. "Emergence of a core-periphery structure in a simple dynamic model of the interbank market," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 11-23.
    3. Lux, Thomas, 2016. "Network effects and systemic risk in the banking sector," FinMaP-Working Papers 62, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    4. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    5. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.
    6. Aldasoro, Iñaki & Delli Gatti, Domenico & Faia, Ester, 2017. "Bank networks: Contagion, systemic risk and prudential policy," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 164-188.
    7. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    8. Dietmar Maringer & Ben Craig & Sandra Paterlini, 2022. "Constructing banking networks under decreasing costs of link formation," Computational Management Science, Springer, vol. 19(1), pages 41-64, January.
    9. Lux, Thomas, 2014. "A model of the topology of the bank-firm credit network and its role as channel of contagion," Kiel Working Papers 1950, Kiel Institute for the World Economy (IfW Kiel).
    10. Blasques, Francisco & Bräuning, Falk & Lelyveld, Iman van, 2018. "A dynamic network model of the unsecured interbank lending market," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 310-342.
    11. Sadamori Kojaku & Giulio Cimini & Guido Caldarelli & Naoki Masuda, 2018. "Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis," Papers 1802.05139, arXiv.org.
    12. Brunetti, Celso & Harris, Jeffrey H. & Mankad, Shawn, 2023. "Networks, interconnectedness, and interbank information asymmetry," Journal of Financial Stability, Elsevier, vol. 67(C).
    13. Montagna, Mattia & Lux, Thomas, 2013. "Hubs and resilience: Towards more realistic models of the interbank markets," Kiel Working Papers 1826, Kiel Institute for the World Economy (IfW Kiel).
    14. Pablo Rovira Kaltwasser & Alessandro Spelta, 2019. "Identifying systemically important financial institutions: a network approach," Computational Management Science, Springer, vol. 16(1), pages 155-185, February.
    15. Montagna, Mattia & Lux, Thomas, 2014. "Contagion risk in the interbank market: A probabilistic approach to cope with incomplete structural information," Kiel Working Papers 1937, Kiel Institute for the World Economy (IfW Kiel).
    16. Karl Finger & Daniel Fricke & Thomas Lux, 2013. "Network analysis of the e-MID overnight money market: the informational value of different aggregation levels for intrinsic dynamic processes," Computational Management Science, Springer, vol. 10(2), pages 187-211, June.
    17. Liu, Anqi & Paddrik, Mark & Yang, Steve Y. & Zhang, Xingjia, 2020. "Interbank contagion: An agent-based model approach to endogenously formed networks," Journal of Banking & Finance, Elsevier, vol. 112(C).
    18. Celso Brunetti & Jeffrey H. Harris & Shawn Mankad, 2021. "Liquidity Networks, Interconnectedness, and Interbank Information Asymmetry," Finance and Economics Discussion Series 2021-017, Board of Governors of the Federal Reserve System (U.S.).
    19. Paul Glasserman & H. Peyton Young, 2015. "Contagion in Financial Markets," Working Papers 15-21, Office of Financial Research, US Department of the Treasury.
    20. Lux, Thomas, 2014. "A Model of the Topology of the Bank-Firm Credit Network and Its Role as Channel of Contagion," FinMaP-Working Papers 19, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.

    More about this item

    Keywords

    liquidity; interbank market; network formation;
    All these keywords.

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fmpwps:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vakiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.