IDEAS home Printed from https://ideas.repec.org/p/zbw/faucse/732006.html
   My bibliography  Save this paper

A note on the construction of generalized Tukey-type transformations

Author

Listed:
  • Fischer, Matthias J.

Abstract

One possibility to construct heavy tail distributions is to directly manipulate a standard Gaussian random variable by means of transformations which satisfy certain conditions. This approach dates back to Tukey (1960) who introduces the popular H-transformation. Alternatively, the K-transformation of MacGillivray & Cannon (1997) or the J-transformation of Fischer & Klein (2004) may be used. Recently, Klein & Fischer (2006) proposed a very general power kurtosis transformation which includes the above-mentioned transformations as special cases. Unfortunately, their transformation requires an infinite number of unknown parameters to be estimated. In contrast, we introduce a very simple method to construct êexible kurtosis transformations. In particular, manageable superstructures are suggested in order to statistically discriminate between H-, J-and K-distributions (associated to H-, J- and K-transformations).

Suggested Citation

  • Fischer, Matthias J., 2006. "A note on the construction of generalized Tukey-type transformations," Discussion Papers 73/2006, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
  • Handle: RePEc:zbw:faucse:732006
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/29570/1/614054869.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ingo Klein & Matthias Fischer, 2006. "Power kurtosis transformations: Definition, properties and ordering," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(3), pages 395-401, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Fischer, 2010. "Generalized Tukey-type distributions with application to financial and teletraffic data," Statistical Papers, Springer, vol. 51(1), pages 41-56, January.
    2. Fischer, Matthias J., 2006. "Generalized Tukey-type distributions with application to financial and teletraffic data," Discussion Papers 72/2006, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    3. Rubio, Francisco Javier & Steel, Mark F. J., 2014. "Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations," MPRA Paper 57102, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:faucse:732006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.