IDEAS home Printed from https://ideas.repec.org/p/zbw/dicedp/303050.html
   My bibliography  Save this paper

Forecasting recessions in Germany with machine learning

Author

Listed:
  • Rademacher, Philip

Abstract

This paper applies machine learning to forecast business cycles in the German economy using a high-dimensional dataset with 73 indicators, primarily from the OECD Main Economic Indicator Database, covering a time period from 1973 to 2023. Sequential Floating Forward Selection (SFFS) is used to select the most relevant indicators and build compact, explainable, and performant models. Therefore, regularized regression models (LASSO, Ridge) and tree-based classification models (Random Forest, and Logit Boost) are used as challenger models to outperform a probit model containing the term spread as a predictor. All models are trained on data from 1973-2006 and evaluated on a hold-out-sample starting in 2006. The study reveals that fewer indicators are necessary to model recessions. Models built with SFFS have a maximum of eleven indicators. Furthermore, the study setting shows that many indicators are stable across time and business cycles. Machine learning models prove particularly effective in predicting recessions during periods of quantitative easing, when the predictive power of the term spread diminishes. The findings contribute to the ongoing discussion on the use of machine learning in economic forecasting, especially in the context of limited and imbalanced data.

Suggested Citation

  • Rademacher, Philip, 2024. "Forecasting recessions in Germany with machine learning," DICE Discussion Papers 416, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
  • Handle: RePEc:zbw:dicedp:303050
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/303050/1/1903197465.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:dicedp:303050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/diduede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.